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How does a processor work?

• Comp Arch 101:

• What’s wrong with that?
• Memory is slow,
• Serial execution is slow,
• Branches (control hazards),
• And many more,



How to make the processor run faster?

• Mitigate memory latency – Branch Prediction
• Assume whether the branch will or will not be taken and fetch next 

instruction based on that.

• Avoid stalling on every branch, potentially higher penalty on a misprediction.

• So we want a high ratio of predicted to mispredicted branches.

if (x < 10) {

…

}

x = 1,2,7,5,4,1,3,2,7,4,5,6,2,3,4,2,1,4,5,8,2,99999999



Out-of-order execution

• Single pipeline in-order execution
• One instruction can stall the upstream

• Can we “bypass” instructions?

• Split the pipeline into multiple 
execution units
• Tomasulo’s algorithm

• Reservation stations

• Common data bus

• Register renaming

• What happens with exceptions?

Hennessy J., Patteron D., Computer Architecture: A Quantitative Approach, 5th Edition

DIV F0,F2,F4

ADD F3,F0,F8

SUB F7,F8,F6



Speculation

• Branch prediction only fetches the data

• It doesn’t execute until we know the 
direction of the branch

• Why not extend that to actual 
speculative execution?

• Need a roll-back mechanism

• Re-order buffer
• Instruction can execute, but not commit

Hennessy J., Patteron D., Computer Architecture: A Quantitative Approach, 5th Edition



Virtual Memory

• Cache/mapping between main 
memory and secondary storage
• Allows for sharing of memory between 

multiple processes
• Protects process memory

• Each process has a virtual address 
space, split into user and kernel
• Kernel address space has the whole 

physical memory mapped into it
• Makes context switching faster
• Randomization schemes exist (KASLR) 

but can be broken

Hennessy J., Patteron D., Computer Architecture: A Quantitative Approach, 5th Edition

Lipp. M et.al., Meltdown



Cache Side-Channel Attacks

• Instead of breaking the security scheme itself, 
observe effects associated with it
• e.g. timing, power, acoustic etc.
• Cache side-channel attacks utilize timing differences

• Flush+Reload
• Uses L3 cache – attacker and victim don’t need to run 

on the same core
• Attacker flushes the cache
• Waits
• Reloads the cache line and checks how long it takes

• If the victim accessed that line, it is chached – shorter 
access

• Attacker and victim need to share pages
• Attacker needs to know the victim’s program layout



Meltdown – exploiting OOOE

• In an in-order execution pipeline an 
exception changes the control flow and 
subsequent instructions are not executed

• This is not necessarily true for OOOE 
processors
• Instructions execute but are not committed 

• From architectural point of view it’s like 
they were not executed
• Registers and memory content are discarded

• But not the cache – side channel
Lipp. M et.al., Meltdown



How to exploit OOOE & cache side-channel?

• Physical memory is mapped in kernel address space

• Unprivileged process trying to access kernel memory will normally 
raise an exception

• Because of OOOE we might be able to run a few more instructions 
before the exception actually triggers
• Race condition

• We will lose the data eventually, but maybe we can set up a side 
channel?



Meltdown – attack sequence

• #4 will trigger an exception when it gets 
committed

• #5-7 are ready to execute as soon as 
data from #4 comes back (not when it 
gets committed)

• If there are enough instructions waiting 
to get committed in the ROB before #4, 
there’s a decent chance #5-7 will 
execute

• Once #4 tries to commit, exception is 
raised and everything is discarded

Lipp. M et.al., Meltdown



Meltdown – setting up the side channel

• Flush+Reload

• Create a “probe” array in memory, and 
flush the corresponding part of the cache
• Secrets are read 8 bits at a time, value is 

multiplied by page size (e.g. 4k) 
• We need 256x4096B array

• Use the secret/kernel value to calculate 
an address into this array
• Load a value based on this address

• “retry” jump deals with situations when 
we’re to slow vs the exception

Lipp. M et.al., Meltdown



Meltdown – retrieving the secret

• After that we loop through the probe array and measure access time
• Address to the fastest access is the secret

• Do it byte by byte, we can read the whole physical memory of the 
machine
• Slow, but not impossible

• 503 KB/s with 0.02% error rate

• Needs to be able to execute code on the machine, but doesn’t need 
privileged access

• Has full control of the covert channel (doesn’t need a victim process)



Meltdown – how bad is it?

• Theoretically affects all architectures, practically shown only on Intel CPUs
• There’s a special class of instructions on Intel CPUs that make it easier to exploit the 

race condition and exception suppression
• ARM lists some cores as vulnerable (A-15/57/72)

• Disable OOOE?
• Not a viable solution

• KASLR (Kernel Address Space Layout Randomization) makes it harder but 
not impossible 

• KAISER (Kernel Address Isolation to have Side-channels Efficiently 
Removed) prevents Meltdown 
• Not 100% as parts of kernel memory still need to mapped to user space. Architecture 

limitation.



Spectre

• Based on return-oriented programming 
• Software technique that analyses the victim binary, finds parts of code that 

can leak information and somehow manipulates them into doing that

• e.g. stack overflow overwriting return address

• Spectre tricks the CPU into incorrectly executing victim’s instructions 
and leaking information

• Information is retrieved using cover channel
• Flush+reload, same as Meltdown



Spectre – training branch predictors

• Find a conditional code snippet (‘gadget’) where attacker can control 
the data
• e.g. range check
• gadget can attacker’s own code (e.g. if it’s sandboxed)

• Invoke it N times to train branch prediction for this particular branch

• Also flush the cache to prepare the covert channel

if (x < array1_size) {

y = array2[array1[x] * 256]

}



Spectre – attack phase

• After the branch predictor is trained, the code is executed once more 
with the x value out of bounds

• Branch prediction + speculation means that the code will be 
executed, but not commited

• From this point onward it’s pretty much the same as Meltdown
• fetch secret data using out-of-bound x as an address

• use that data as an address to the probe array



Spectre – how bad is it?

• Works on Intel, AMD, ARM.

• Can’t read kernel/physical memory, can only read other processes 
information

• Harder to exploit than Meltdown (requires finding and using 
‘gadgets’)
• Not impossible and most likely would target browsers

• Harder to mitigate 
• It’s a class of attacks, not a single one (2 variants at the moment)
• Browser updates (e.g. site isolation)
• Processor microcode updates (performance drops)
• Google’s “retpoline” (compiler level)



Comparison

• Meltdown uses OOOE+Speculation, Spectre uses Branch 
Prediction+Speculation

• Both use Flush+Reload as covert channel (other options possible)

• Meltdown can read the whole physical memory, Spectre only the 
memory of the process it’s attacking

• Meltdown is mitigated with KAISER, Spectre mitigation techniques are 
not foolproof and have performance impact
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