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What are Event Driven Cameras?

* Instead of using a frame clock to capture
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and update them using asynchronous events. i BN
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nous events, encoding change and brightness information, are generated and
Op'“c al'ﬂOW Sensors. transmitted individually by each pixel in the imaging array.

D. Reverter Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S. leng and R. Benosman, "An
Asynchronous Neuromorphic Event-Driven Visual Part-Based Shape Tracking,"

* Why?
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Gallego, Guillermo, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi,
Stefan Leutenegger et al. "Event-based vision: A survey."
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Commercial/Prototype Cameras

Table 1
Comparison of commercial or prototype event cameras. Values are approximate since there is no standard measurement testbed.
Supplier iniVation Prophesee Samsung CelePixel Insightness
Camera model ‘ DVS128 | DAVIS240 | DAVIS346 ‘ ATIS | Gen3 CD |Gen3 ATIS| Gen 4 CD ‘DVS—Gen2|DVS—Gen3| DVS-Gend ‘ CeleX-IV | CeleX-V Rino 3
Year, Reference 2008 [2 2014 [4 2017 | 2011 [3] | 2017 [66] | 2017 [66] | 2020 [67] | 2017 [5] | 2018 [68] | 2020 [39] | 2017 [69] | 2019 [70] | 2018 [71
Resolution (pixels)
Latency (ps) 12ps @ 1klux | 12ps @ 1klux| 20 3 40-200 | 40-200 | 20-150 | 65-410 50 150 10 8 12545 @ 10lux
Dynamic range (dB) 120 120 120 143 >120 | > 120 > 124 90 90 100 90 120 > 100
Min. contrast sensitivity (%) 17 11 143-225 13 12 12 11 9 15 20 30 10 15
£ | Power consumption (mW) 23 5-14 10-170 | 50-175 | 36-95 | 25-87 | 32-73 | 27-50 40 130 - 400 2070
2 | Chip size (mm2) 63 % 6 5%5 8x6 |99x82|06x72|96x72|622x35| 8x58 | 8x58 | 84x76 155 x 158]14.3 x 11.6| 53 x 5.3
£ | Pixel size (um2) 40 x40 | 185x 185 [185x185| 30x30 | 15x 15 | 20 x 20 (486 x 486 9x9 9x9 [495x495| 18x18 | 98x98 | 13x13
‘g | Fill factor (%) 8.1 22 2 20 25 20 > 77 11 12 2 8.5 8 2
2 | Supply voltage (V) 33 18&33 | 1.8&33 |18&33| 18 18 11&25 | 12&28 | 12&28 18&33 | 1.2&25 | 18&33
v Stationary noise (ev/pix/s) at 25C 0.05 0.1 0.1 - 0.1 0.1 0.1 0.03 0.03 0.15 0.2 0.1
% | CMOS technology (nm) 350 180 180 180 180 180 90 90 90 65/28 180 65 180
& 2PAM | 1IP6MMIM |[1IP6MMIM| 1P6M |1P6M CIS| 1P6M CIS | BICIS | 1P5M BSI 1P6M CIS | CIS 1P6M CIS
Grayscale output no yes yes yes no yes no no no no yes yes yes
Grayscale dynamic range (dB) NA 55 56.7 130 NA > 100 NA NA NA NA 90 120 50
Max. frame rate (fps) NA 35 40 NA NA NA NA NA NA NA 50 100 30
& |Max. Bandwidth (Meps) 1 12 12 - 66 66 1066 300 600 1200 200 140 20
£ |Interface USB 2 USB 2 USB 3 USB3 | USB3 USB 3 USB2 | USB3 USB3 USB 2
C‘ IMU output no 1kHz 1kHz no 1kHz 1kHz no no 1kHz no no no 1kHz

Gallego, Guillermo, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi,
Stefan Leutenegger et al. "Event-based vision: A survey."

® Trends:
* Higher spatial resolution.
* Higher readout speed.
« Gray level output.
* Intertial measurement unit.

¢ Multi-camera time-stamps.

* Recent Trends:
* Smaller pixel size.

“Event camera pixel size has shrunk pretty closely following feature size scaling, which is remarkable considering that a
DVS pixel is a mixed-signal circuit, which generally do not scale following technology. However, achieving even smaller
pixels is difficult and may require abandoning the strictly asynchronous circuit design philosophy that the cameras started
with. Camera cost is constrained by die size (since silicon costs about $5-$10=cm:.in mass production), and optics
(designing new mass production miniaturized optics to fit a different sensor format can cost tens of millions of dollars).”
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Challenges

* Fundamentally different output format than conventional cameras.
« Asynchronous.

« Sparse.
* Requires new algorithms to deal with that.

« Different photometric sensing.
» Binary information (increase/decrease) instead of grayscale values.

* Noise and dynamic effects.
* Photon + transistor circuit noise is a problem for all cameras.
* For event driven ones, quantizing temporal contrast is complex and not fully characterized.
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Event Processing

* Representation
Individual events

time

ON t
- Probabilistic filters, spiking neural networks. :}_".OF%_ . eve"
* Require retaining past knowledge. =
SEEE </ Event Spike
» Event packet [ el Tensor

Event frame/2D histogram/edge maps
 Familiar representation. —
» Looses sparsity and timestamp information. i *
Also: time surface, voxel grid, 3D point set,

motion compensated images, reconstructed e

i Two Channel Voxel Grid Event Frame
|mages Event Frame

Figure 3. Different ways to convert events into more familiar representa-
tions, suitable for processing with modern learning architectures [111].
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Event Processing

* Event-by-event

* Filters
« Deterministic filters (e.g. convolutions) for noise reduction, feature extraction, image reconstruction, brightness filtering.
+ Probabilistic filters (Bayesian methods) for tracking.
* Require additional information (past events or grayscale map).

 ANNS
* Unsupervised learning is used to design feature extractors.
« |f there’s enough labeled data, supervised learning can be used.
« Training is generally done on packets of events.
» Trained network can be converted to a SNN.
» Used for object/action classification.

» Groups of events
» Mainly pre-processing for classical computer vision tools.
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How to Track Objects Based on Events?

* Gaussian blob trackers

* Defined by mean (x,y) and covariance
matrix.

» Detected events are assigned to a
tracker based on highest probability:

pl(u) — L | EI |_%€_%(u_ou'i)T(Ei)_l(u_ﬂi)
2w

Fig. 2. Gaussian tracker B following a cloud of events is defined by its

° Tracker |S then updated location ,ui(t) = [,ufr(r),,ug,(t)]T and covariance matrix ‘(7).

D. rter Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S. leng
and R. Benosman, "An Asynchronous Neuromorphic Event
riven Visual Part-Based Shape Tracking,"

p) = oypu(t —At) + (1 —ap)u
)= X2 —At)+ (1 —ar)AZ
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Grouping Trackers Together

* More complex objects can be tracked by
modeling a system of trackers connected by
springs.

 Displacement, energy etc can be calculated
from the Hooke’s law and Newton’s second
law.

 This system can deal with occlusions and
distortions.

r

.
/—\ Graylevel output of the ATIS

Trackers

Connections

Fig. 18.
to follow a face from incoming events. Ellipses: position of the trackers.
Lines: connections set between the trackers. Each connection is a combination
of a Euclidean connection and a torsional connection, with @ = 0.02 for both
the connections.

Set of trackers and the structure of their connections used

Fig. 19.  Set of connected trackers is disturbed by a dynamic occlusion
introduced by waving a hand in front of the face. As the hand passes in
front of the face, it first attracts the trackers, displacing them from their right
position. However, the system is sufficiently robust to compensate by attracting
the trackers to the right position again, without losing track of the face.

D. Reverter Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S. leng
and R. Benosman, "An Asynchronous Neuromorphic Event-
Driven Visual Part-Based Shape Tracking,"
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Convolutional Trackers - CAVIAR

(a)
TABLE 1
TEMPORAL CONTRAST VISION SENSOR PROPERTIES ADAPTED FROM [20]
Functionality Asynchronous temporal contrast
low-level processing high-level processing Pixel size ( “-m) 40x40
(b) Retinachip Convolution chips ‘Object’ WTA chip Delay line & learning chip Chip size (mm) 6X6
(INI, Zurich) (IMSE, Seville) (INI, Zurich) (UIO, Oslo) T Factor 0 A%
Z Fabrication process 4M 2P 0.35um CMOS
el onloff E—r W"ajwc,y Pixel complexity 26 transistors (14 analog), 3 capacitors
Dﬁed(s) tempcst spatial convolution .| .. position & size classification - Array size 128x128
ey Interface 15-bit non-greedy AER
W <5 N 1 ] [N s Power consumption 24mW
e ‘IRR Dynamic range 120dB, 2 Tux to >100klux scene illumination with f/
J $ $ 1.2 lens. Moonlight capable with high contrast scene
"}':“::)"Jt RN o= Responsc latency 15us @ 700mW/m~
< Max events/sec ~2 Meps
Tracking control Standard deviation ¢ 2.1% scene contrast
of temporal contrast

- Synchronous AER interchip and computer Interfaces threshold
i — Monior,remap. nject AER
. (USE, Seville)

Fig. 1. CAVIAR system overview. (a) A bioinspired system architecture performing feedforward sensing + processing + actuation tends to have the following
conceptual hierarchical structure: 1) a sensing layer; 2) a set of low-level processing layers usually implemented through projection fields (convolutions) for feature
extraction and combination; 3) a set of high level processing layers that operate on “abstractions” and progressively compress information through, for example,
dimension reduction, competition, and learning; 4) once a reduced set of signals/decisions is obtained they are conveyed to (usually mechanical) actuators. (b)
The CAVIAR system components and multilayer architecture; an example output of each component is shown in response to the rotating stimulus and the basic
functionality is illustrated below each chip component.

R. Serrano-Gotarredona et al., "CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER
Hardware Sensory—Processing— Learning—Actuating System for High-Speed Visual Object
Recognition and Tracking,"
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CAVIAR ctd.

@ TABLE II
1 T CONVOLUTION CHIP PROPERTIES
5 - g Functionality Dynamic 2D Convo};tl}';); with programmable
@ &M HEPH - 1 Pixel size (um) 30x30
i “‘ Chip size (mm) 3054
Fabrication process 4M 2P 0.35um CMOS
iy T PhelAray Pixel complexity 364 transistors, 1 capacitor
S— i Array size 32x32
Sheeq o Contol 7,_} 5 I max kernel size 3Ix3T
kernel weight resolution 4 bit
calibration resolution 5 bit
Interface 15-bit word parallel non-greedy AER
Power consumption 66-150mW, depending on kernel size
forgetting rate adjustable
Max outevents/sec 25 Meps
R. Serrano-Gotarredona et al., "CAVIAR: A 45k Neuron,
5M Synapse, 12G Connects/s AER Hardware Sensory—
Pljocessin‘g— Learning-—Actuating Sys?em for High-Speed event pulse
Visual Object Recognition and Tracking," event signT T Tf{)rgetﬁng pulse
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Fig. 3. Convolution chip. (a) Architecture of the convolution chip. (b) Mi-
crophotograph of fabricated chip. (c) Kernel for detecting circumferences of Fig. 4. Simplified block diagram of convolution chip pixel.
radius close to four pixels and (d) close to nine pixels.
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Convolutional Trackers ctd.
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Other Tracking Methods

* |[terative Closest Point (ICP)

* Gradient Descent
 Mean-shift
 Monte-Carlo methods

« Particle filtering
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