
1

Hardware Architectures for
Deep Neural Networks

ISCA Tutorial

June 24, 2017

Website: http://eyeriss.mit.edu/tutorial.html

2

Speakers and Contributors 2

Yu-Hsin Chen
PhD Candidate

MIT

Vivienne Sze
Professor

MIT

Joel Emer

Professor
MIT

Senior Distinguished
Research Scientist

NVIDIA

Tien-Ju Yang
PhD Candidate

MIT

3

Outline

•  Overview of Deep Neural Networks

•  DNN Development Resources

•  Survey of DNN Hardware

•  DNN Accelerators

•  DNN Model and Hardware Co-Design

4

Participant Takeaways
•  Understand the key design considerations for

DNNs

•  Be able to evaluate different implementations of
DNN with benchmarks and comparison metrics

•  Understand the tradeoffs between various
architectures and platforms

•  Assess the utility of various optimization
approaches

•  Understand recent implementation trends and
opportunities

5

Resources

•  Eyeriss Project: http://eyeriss.mit.edu
–  Tutorial Slides

–  Benchmarking

–  Energy modeling

–  Mailing List for updates
•  http://mailman.mit.edu/mailman/listinfo/eems-news

–  Paper based on today’s tutorial:
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017

6

Background of
Deep Neural Networks

7

Artificial Intelligence

Artificial Intelligence

“The science and engineering of creating
intelligent machines”
 - John McCarthy, 1956

8

Artificial Intelligence

AI and Machine Learning

Machine Learning

“Field of study that gives computers the ability
to learn without being explicitly programmed”

– Arthur Samuel, 1959

9

Artificial Intelligence

Brain-Inspired Machine Learning

Machine Learning

Brain-Inspired

An algorithm that takes its basic
functionality from our understanding
of how the brain operates

10

How Does the Brain Work?

•  The basic computational unit of the brain is a neuron
à 86B neurons in the brain

•  Neurons are connected with nearly 1014 – 1015 synapses
•  Neurons receive input signal from dendrites and produce

output signal along axon, which interact with the dendrites of
other neurons via synaptic weights

•  Synaptic weights – learnable & control influence strength

Image Source: Stanford

11

Artificial Intelligence

Spiking-based Machine Learning

Machine Learning

Brain-Inspired

Spiking

12

Spiking Architecture

•  Brain-inspired
•  Integrate and fire
•  Example: IBM TrueNorth

[Merolla et al., Science 2014; Esser et al., PNAS 2016]

http://www.research.ibm.com/articles/brain-chip.shtml

13

Artificial Intelligence

Machine Learning with Neural Networks

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

14

Neural Networks: Weighted Sum

Image Source: Stanford

15

Many Weighted Sums

Image Source: Stanford

16

Artificial Intelligence

Deep Learning

Machine Learning

Brain-Inspired

Spiking

Neural
Networks

Deep
Learning

17

What is Deep Learning?

Image
“Volvo
XC90”

Image Source: [Lee et al., Comm. ACM 2011]

18

Why is Deep Learning Hot Now?

350M images
uploaded per
day

2.5 Petabytes
of customer
data hourly

300 hours of
video uploaded
every minute

Big Data
Availability

GPU
Acceleration

New ML
Techniques

19

ImageNet Challenge

Image Classification Task:
 1.2M training images • 1000 object categories

Object Detection Task:
 456k training images • 200 object categories

20

ImageNet: Image Classification Task

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 Human

Top 5 Classification Error (%)
large error rate reduction
due to Deep CNN

[Russakovsky et al., IJCV 2015]

Deep CNN-based designs Hand-crafted feature-
based designs

21

GPU Usage for ImageNet Challenge

22

Established Applications

•  Image
o  Classification: image to object class
o  Recognition: same as classification (except for faces)
o  Detection: assigning bounding boxes to objects
o  Segmentation: assigning object class to every pixel

•  Speech & Language
o  Speech Recognition: audio to text
o  Translation
o  Natural Language Processing: text to meaning
o  Audio Generation: text to audio

•  Games

23

Deep Learning on Games

Google DeepMind AlphaGo

24

Emerging Applications
•  Medical (Cancer Detection, Pre-Natal)

•  Finance (Trading, Energy Forecasting, Risk)

•  Infrastructure (Structure Safety and Traffic)

•  Weather Forecasting and Event Detection

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/

25

Deep Learning for Self-driving Cars

26

Opportunities

From EE Times – September 27, 2016

”Today the job of training machine learning models is
limited by compute, if we had faster processors we’d
run bigger models…in practice we train on a reasonable
subset of data that can finish in a matter of months. We
could use improvements of several orders of magnitude
– 100x or greater.”

– Greg Diamos, Senior Researcher, SVAIL, Baidu

27

Overview of
Deep Neural Networks

28

DNN Timeline

•  1940s: Neural networks were proposed
•  1960s: Deep neural networks were proposed
•  1989: Neural network for recognizing digits (LeNet)
•  1990s: Hardware for shallow neural nets

–  Example: Intel ETANN (1992)

•  2011: Breakthrough DNN-based speech recognition
–  Microsoft real-time speech translation

•  2012: DNNs for vision supplanting traditional ML
–  AlexNet for image classification

•  2014+: Rise of DNN accelerator research
–  Examples: Neuflow, DianNao, etc.

29

Publications at Architecture Conferences

•  MICRO, ISCA, HPCA, ASPLOS

30

So Many Neural Networks!

http://www.asimovinstitute.org/neural-network-zoo/

31

DNN Terminology 101

Image Source: Stanford

Neurons

32

DNN Terminology 101

Image Source: Stanford

Synapses

33

DNN Terminology 101

Image Source: Stanford

Each synapse has a weight for neuron activation

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

34

DNN Terminology 101

Image Source: Stanford

Weight Sharing: multiple synapses use the same weight value

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

35

DNN Terminology 101

Image Source: Stanford

L1 Neuron outputs
a.k.a. Activations L1 Neuron inputs

e.g. image pixels

Layer 1

36

DNN Terminology 101

Image Source: Stanford

L2 Output
Activations

L2 Input
Activations Layer 2

37

DNN Terminology 101

Image Source: Stanford

Fully-Connected: all i/p neurons connected to all o/p neurons

Sparsely-Connected

38

DNN Terminology 101

Image Source: Stanford

Feed Forward Feedback

39

Popular Types of DNNs

•  Fully-Connected NN
–  feed forward, a.k.a. multilayer perceptron (MLP)

•  Convolutional NN (CNN)
–  feed forward, sparsely-connected w/ weight sharing

•  Recurrent NN (RNN)
–  feedback

•  Long Short-Term Memory (LSTM)
–  feedback + storage

40

Inference vs. Training

•  Training: Determine weights
–  Supervised:

•  Training set has inputs and outputs, i.e., labeled

–  Unsupervised:
•  Training set is unlabeled

–  Semi-supervised:
•  Training set is partially labeled

–  Reinforcement:
•  Output assessed via rewards and punishments

•  Inference: Apply weights to determine output

41

Deep Convolutional Neural Networks

Modern Deep CNN: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

42

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Convolution Activation

×	

43

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

Fully
Connected

Activation

×	

44

Deep Convolutional Neural Networks

Classes FC
Layer

CONV
Layer

CONV
Layer

High-Level
Features

Optional layers in between
CONV and/or FC layers

NORM
Layer

POOL
Layer

Normalization Pooling

45

Deep Convolutional Neural Networks

Classes
High-Level
Features FC

Layer
CONV
Layer

CONV
Layer

NORM
Layer

POOL
Layer

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

46

Convolution (CONV) Layer

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

W

47

R

filter (weights)

Convolution (CONV) Layer

input fmap

S

Element-wise
Multiplication

H

W

48

R

filter (weights)

S

Convolution (CONV) Layer

E

F
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output
activation

49

H
R

filter (weights)

S

Convolution (CONV) Layer

E

Sliding Window Processing

input fmap
an output
activation

output fmap

W F

50

H

Convolution (CONV) Layer

R

S

C

input fmap

output fmap
C filter

Many Input Channels (C)

E

W F

51

Convolution (CONV) Layer

E

output fmap many
filters (M)

Many
Output Channels (M)

M

…

R

S
1

R

S

C

M

H

input fmap
C

C

W F

52

Convolution (CONV) Layer

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)
…

R

S

R

S

C

C

filters

E

F

H

C

H

W

C

E
1 1

N N

W F

53

CNN Decoder Ring

•  N – Number of input fmaps/output fmaps (batch size)
•  C – Number of 2-D input fmaps /filters (channels)
•  H – Height of input fmap (activations)
•  W – Width of input fmap (activations)
•  R – Height of 2-D filter (weights)
•  S – Width of 2-D filter (weights)
•  M – Number of 2-D output fmaps (channels)
•  E – Height of output fmap (activations)
•  F – Width of output fmap (activations)

54

CONV Layer Tensor Computation
Input fmaps (I)

Filter weights (W)
Output fmaps (O)

Biases (B)

55

CONV Layer Implementation

Naïve 7-layer for-loop implementation:

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value

convolve
a window
and apply
activation

56

Traditional Activation Functions

Image Source: Caffe Tutorial

Sigmoid
1

-1

0

0 1 -1

y=1/(1+e-x)	

Hyperbolic Tangent
1

-1

0

0 1 -1

y=(ex-e-x)/(ex+e-x)	

57

Modern Activation Functions

Rectified Linear Unit
(ReLU)

1

-1

0

0 1 -1

y=max(0,x)	

Leaky ReLU

1

-1

0

0 1 -1

y=max(αx,x)	

Exponential LU

1

-1

0

0 1 -1
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1)

Image Source: Caffe Tutorial

58

Fully-Connected (FC) Layer
•  Height and width of output fmaps are 1 (E = F = 1)
•  Filters as large as input fmaps (R = H, S = W)
•  Implementation: Matrix Multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

59

H

W

C

N

FC Layer – from CONV Layer POV

…

M

…

input fmaps
output fmaps

…

H

H

W

C

C

filters

H

C

1
1 1

1

1
N

W 1 W

60

Pooling (POOL) Layer

Image Source: Caffe Tutorial

•  Reduce resolution of each channel independently
•  Overlapping or non-overlapping à depending on stride

Increases translation-invariance and noise-resilience

61

POOL Layer Implementation

Naïve 6-layer for-loop max-pooling implementation:
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value

find the max
with in a window

62

Normalization (NORM) Layer

•  Batch Normalization (BN)
–  Normalize activations towards mean=0 and std.

dev.=1 based on the statistics of the training dataset

–  put in between CONV/FC and Activation function

[Ioffe et al., ICML 2015]

CONV
Layer

Convolution Activation

×	
BN

Believed to be key to getting high accuracy and
faster training on very deep neural networks.

63

BN Layer Implementation
•  The normalized value is further scaled and shifted, the

parameters of which are learned from training

data mean

data std. dev.

learned scale factor

learned shift factor
small const. to avoid
numerical problems

64

Normalization (NORM) Layer

•  Local Response Normalization (LRN)
•  Tries to mimic the inhibition scheme in the brain

Image Source: Caffe Tutorial

Now deprecated!

65

Relevant Components for Tutorial

•  Typical operations that we will discuss:
–  Convolution (CONV)
–  Fully-Connected (FC)
–  Max Pooling
–  ReLU

1

Survey of DNN
Development Resources

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Popular DNNs

•  LeNet (1998)
•  AlexNet (2012)
•  OverFeat (2013)
•  VGGNet (2014)
•  GoogleNet (2014)
•  ResNet (2015)

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[O. Russakovsky et al., IJCV 2015]

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

3

LeNet-5

[Y. Lecun et al, Proceedings of the IEEE, 1998]

CONV Layers: 2
Fully Connected Layers: 2
Weights: 60k
MACs: 341k
Sigmoid used for non-linearity

Digit Classification!

2x2
average
pooling

six
5x5 filters

2x2
average
pooling

six
5x5 filters

4

AlexNet
CONV Layers: 5
Fully Connected Layers: 3
Weights: 61M
MACs: 724M
ReLU used for non-linearity [Krizhevsky et al., NIPS, 2012]

ILSCVR12 Winner

Uses Local Response Normalization (LRN)

L1	 L2	 L3	 L4	 L5	 L6	 L7	

1000	
scores	224x224	

Input	
Image	

Co
nv
	(1

1x
11

)	
N
on

-L
in
ea
rit
y	

N
or
m
	(L
RN

)	
M
ax
	P
oo

l	

Co
nv
	(5

x5
)	

N
on

-L
in
ea
rit
y	

N
or
m
	(L
RN

)	
	M

ax
	P
oo

lin
g	

Co
nv
	(3

x3
)	

N
on

-L
in
ea
rit
y	

Co
nv
	(3

x3
)	

N
on

-L
in
ea
rit
y	

Co
nv
	(3

x3
)	

N
on

-L
in
ea
rit
y	

	M
ax
	P
oo

lin
g	

Fu
lly
	C
on

ne
ct
	

N
on

-L
in
ea
rit
y	

Fu
lly
	C
on

ne
ct
	

N
on

-L
in
ea
rit
y	

Fu
lly
	C
on

ne
ct
	

N
on

-L
in
ea
rit
y	

35k	 307k	 885k	 664k	 442k	 37.7M	 16.8M	 4.1M	#	of	weights	

5

Large Sizes with Varying Shapes 5

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride
1 11x11 96 3 4
2 5x5 256 48 1
3 3x3 384 256 1
4 3x3 384 192 1
5 3x3 256 192 1

AlexNet	Convolu7onal	Layer	Configura7ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
[Krizhevsky et al., NIPS, 2012]

6

VGG-16
CONV Layers: 13
Fully Connected Layers: 3
Weights: 138M
MACs: 15.5G

[Simonyan et al., arXiv 2014, ICLR 2015]
Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/

Also, 19 layer version

More Layers à Deeper!

Reduce # of weights

7

GoogLeNet (v1)

[Szegedy et al., arXiv 2014, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

parallel filters of different size has the effect of
processing image at different scales

1x1 ‘bottleneck’ to
reduce number of
weights

Inception
Module

CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

8

GoogLeNet (v1)
CONV Layers: 21 (depth), 57 (total)
Fully Connected Layers: 1
Weights: 7.0M
MACs: 1.43G

[Szegedy et al., arXiv 2014, CVPR 2015]

Also, v2, v3 and v4
ILSVRC14 Winner

9 Inception Layers

3 CONV layers 1 FC layer

9

ResNet-50
CONV Layers: 49
Fully Connected Layers: 1
Weights: 25.5M
MACs: 3.9G

[He et al., arXiv 2015, CVPR 2016]

Also, 34,152 and 1202 layer versions
ILSVRC15 Winner

Short Cut Module

Helps address the vanishing gradient
challenge for training very deep networks

1 CONV layer

1 FC layer

16 Short
Cut Layers

ResNet-34

3x3 CONV

ReLU

ReLU

3x3 CONV

+

x	

F(x)	

H(x)	=	F(x)	+	x	

Iden%ty	
x	

Learns
Residual

F(x)=H(x)-x

10

Revolution of Depth

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

11

Summary of Popular DNNs
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of MACs 283k 666M 15.3G 1.43G 3.86G
of FC layers 2 3 3 1 1
of Weights 58k 58.6M 124M 1M 2M
of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

CONV Layers increasingly important!

12

Summary of Popular DNNs
•  AlexNet

–  First CNN Winner of ILSVRC
–  Uses LRN (deprecated after this)

•  VGG-16
–  Goes Deeper (16+ layers)
–  Uses only 3x3 filters (stack for larger filters)

•  GoogLeNet (v1)
–  Reduces weights with Inception and only one FC layer
–  Inception: 1x1 and DAG (parallel connections)
–  Batch Normalization

•  ResNet
–  Goes Deeper (24+ layers)
–  Shortcut connections

13

Frameworks

Also, CNTK, MXNet, etc.
More at: https://developer.nvidia.com/deep-learning-frameworks

Berkeley / BVLC
(C, C++, Python, MATLAB)

Google
(C++, Python)

U. Montreal
(Python)

Facebook / NYU
(C, C++, Lua)

* *

* Lightweight mobile versions (Caffe2go, TensorFlow Mobile)

14

Example: Layers in Caffe

http://caffe.berkeleyvision.org/tutorial/layers.html

!

layer {!

 name: "relu1"!

 type: "ReLU"!

 bottom: "conv1"!

 top: "conv1"!

}!

!

layer {!

 name: "conv1"!

 type: "Convolution"!

 bottom: "data"!

 top: "conv1"!

 ...!

 convolution_param {!

 num_output: 20!

 kernel_size: 5!

 stride: 1!

...!

!

layer {!

 name: "pool1"!

 type: "Pooling"!

 bottom: "conv1"!

 top: "pool1"!

 pooling_param {!

 pool: MAX!

 kernel_size: 2!

 stride: 2 ...!

Pooling Layer

Convolution Layer

Non-Linearity

15

Benefits of Frameworks

•  Rapid development
•  Sharing models
•  Workload profiling
•  Network hardware co-design

16

Image Classification Datasets

•  Image Classification/Recognition
–  Given an entire image à Select 1 of N classes
–  No localization (detection)

Image Source: Stanford cs231n

Datasets affect difficulty of task

17

MNIST

LeNet in 1998
(0.95% error)

ICML 2013
(0.21% error)

http://yann.lecun.com/exdb/mnist/

Digit Classification
28x28 pixels (B&W)
10 Classes
60,000 Training
10,000 Testing

18

ImageNet

http://www.image-net.org/challenges/LSVRC/

Object Classification
~256x256 pixels (color)
1000 Classes
1.3M Training
100,000 Testing (50,000 Validation)

Image Source: http://karpathy.github.io/

19

ImageNet

http://www.image-net.org/challenges/LSVRC/

Image Source: http://karpathy.github.io/

Fine grained
Classes
(120 breeds)

Top-5 Error
Image Source: Krizhevsky et al., NIPS 2012

Winner 2012
(16.42% error)

Winner 2016
(2.99% error)

20

Image Classification Summary

MNIST IMAGENET
Year 1998 2012
Resolution 28x28 256x256
Classes 10 1000
Training 60k 1.3M
Testing 10k 100k
Accuracy 0.21% error

(ICML 2013)
2.99%

top-5 error
(2016 winner)

http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html

21

Next Tasks: Localization and Detection

[Russakovsky et al., IJCV, 2015]

22

Others Popular Datasets
•  Pascal VOC

–  11k images
–  Object Detection
–  20 classes

•  MS COCO
–  300k images
–  Detection, Segmentation
–  Recognition in context

http://mscoco.org/ http://host.robots.ox.ac.uk/pascal/VOC/

23

Recently Introduced Datasets

•  Google Open Images (~9M images)
–  https://github.com/openimages/dataset

•  Youtube-8M (8M videos)
–  https://research.google.com/youtube8m/

•  AudioSet (2M sound clips)
–  https://research.google.com/audioset/index.html

24

Summary

•  Development resources presented in this
section enable us to evaluate hardware using
the appropriate DNN model and dataset
–  Difficult tasks typically require larger models
–  Different datasets for different tasks
–  Number of datasets growing at a rapid pace

1

Survey of
DNN Hardware

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

CPUs Are Targeting Deep Learning

Image Source: Intel, Data Source: Next Platform

Knights Mill: next gen Xeon Phi “optimized for deep learning”

•  7 TFLOPS FP32

•  16GB MCDRAM– 400 GB/s

•  245W TDP

•  29 GFLOPS/W (FP32)

•  14nm process

Intel Knights Landing (2016)

Intel announced the addition of new vector instructions for deep learning
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016

3

GPUs Are Targeting Deep Learning

•  10/20 TFLOPS FP32/FP16

•  16GB HBM – 750 GB/s

•  300W TDP

•  33/67 GFLOPS/W (FP32/FP16)

•  16nm process

•  160GB/s NV Link

Source: Nvidia

Nvidia PASCAL GP100 (2016)

4

GPUs Are Targeting Deep Learning

•  15 TFLOPS FP32

•  16GB HBM2 – 900 GB/s

•  300W TDP

•  50 GFLOPS/W (FP32)

•  12nm process

•  300GB/s NV Link2

•  Tensor Core….

Source: Nvidia

Nvidia VOLTA GV100 (2017)

5

GV100 – “Tensor Core”

Tensor Core….

•  120 TFLOPS (FP16)

•  400 GFLOPS/W (FP16)

6

Systems for Deep Learning

•  170 TFLOPS

•  8× Tesla P100, Dual Xeon

•  NVLink Hybrid Cube Mesh

•  Optimized DL Software

•  7 TB SSD Cache

•  Dual 10GbE, Quad IB 100Gb

•  3RU – 3200W

Source: Nvidia

Nvidia DGX-1 (2016)

7

Cloud Systems for Deep Learning

•  Open Rack Compliant

•  Powered by 8 Tesla M40 GPUs

•  2x Faster Training for Faster Deployment

•  2x Larger Networks for Higher Accuracy

Source: Facebook

Facebook’s Deep Learning Machine

8

SOCs for Deep Learning Inference

ARM v8
CPU

COMPLEX
(2x Denver 2 + 4x

A57)
Coherent HMP

SECURITY
ENGINES

2D
ENGINE

4K60
VIDEO

ENCODER

4K60
VIDEO

DECODER

AUDIO
ENGINE

DISPLAY
ENGINES

IMAGE
PROC
(ISP)

128-bit
LPDDR4

BOOT and
PM PROC

GigE
Ethernet

MAC

I/O Safety
Engine

•  GPU: 1.5 TeraFLOPS FP16

•  4GB LPDDR4 @ 25.6 GB/s

•  15 W TDP
(1W idle, <10W typical)

•  100 GFLOPS/W (FP16)

•  16nm process

Source: Nvidia

Nvidia Tegra - Parker

Xavier: next gen Tegra to be an “AI supercomputer”

9

Mobile SOCs for Deep Learning

•  GPU: 0.26 TFLOPS

•  LPDDR4 @ 28.7 GB/s

•  14nm process

Exynos 8 Octa 8890

Source: Wikipedia

Samsung Exynos (ARM Mali)

10

FPGAs for Deep Learning

•  10 TFLOPS FP32
•  HBM2 integrated
•  Up to 1 GHz
•  14nm process
•  80 GFLOPS/W

Intel/Altera Stratix 10

Xilinx Virtex UltraSCALE+
•  DSP: up to 21.2 TMACS
•  DSP: up to 890 MHz
•  Up to 500Mb On-Chip Memory
•  16nm process

11

Kernel
Computation

12

Fully-Connected (FC) Layer

M

CHW

CHW

1

Filters Input fmaps

×

1
Output fmaps

M =

•  Matrix–Vector Multiply:
•  Multiply all inputs in all channels by a weight and sum

13

Fully-Connected (FC) Layer

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M =

•  Batching (N) turns operation into a Matrix-Matrix multiply

14

Fully-Connected (FC) Layer

•  Implementation: Matrix Multiplication (GEMM)

•  CPU: OpenBLAS, Intel MKL, etc
•  GPU: cuBLAS, cuDNN, etc

•  Optimized by tiling to storage hierarchy

15

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

16

Convolution (CONV) Layer
•  Convert to matrix mult. using the Toeplitz Matrix

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

Data is repeated

17

Convolution (CONV) Layer

•  Multiple Channels and Filters

1 2
3 4Filter 1

Input Fmap

Chnl 1 * = 1 2
3 4

1 2
3 4Filter 2

Chnl 1 Chnl 2

1 2 3
4 5 6
7 8 9
Chnl 1 Chnl 2

1 2
3 4

1 2
3 4

1 2 3
4 5 6
7 8 9

1 2
3 4 Chnl 2

Output Fmap

18

Convolution (CONV) Layer

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4×

Toeplitz Matrix
(w/ redundant data)

•  Multiple Channels and Filters

Chnl 1 Chnl 2
Filter 1
Filter 2

Chnl 1

Chnl 2

Chnl 1
Chnl 2

19

Computational
Transforms

20

Computation Transformations

•  Goal: Bitwise same result, but reduce
number of operations

•  Focuses mostly on compute

21

Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

22

Strassen

P1 = a(f – h)
P2 = (a + b)h
P3 = (c + d)e
P4 = d(g – e)

P5 = (a + d)(e + h)
P6 = (b - d)(g + h)
P7 = (a – c)(e + f)

8 multiplications + 4 additions

7 multiplications + 18 additions

7 multiplications + 13 additions (for constant B matrix – weights)

[Cong et al., ICANN, 2014]

23

Strassen

Comes at the price of reduced numerical stability
and requires significantly more memory

N

Naïve

Strassen

Complexity

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/

•  Reduce the complexity of matrix multiplication
from Θ(N3) to Θ(N2.807) by reducing multiplication

24

Winograd 1D – F(2,3)

[Lavin et al., ArXiv 2015]

•  Targeting convolutions instead of matrix multiply
•  Notation: F(size of output, filter size)

6 multiplications + 4 additions

=[█𝑦0@𝑦1 ]

4 multiplications + 12 additions + 2 shifts
4 multiplications + 8 additions (for constant weights)

input filter

25

Winograd 2D - F(2x2, 3x3)

•  1D Winograd is nested to make 2D Winograd

d00 d01 d02 d03

d10 d11 d12 d13

d20 d21 d22 d23

d30 d31 d32 d33

Winograd: 16 multiplications à 2.25 times reduction

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Original: 36 multiplications

Filter Input Fmap Output Fmap

* =

26

Winograd Halos
•  Winograd works on a small region of output at a

time, and therefore uses inputs repeatedly

d00 d01 d02 d03 d04 d05

d10 d11 d12 d13 d14 d15

d20 d21 d22 d23 d24 d25

d30 d31 d32 d33 d34 d35

g00 g01 g02

g10 g11 g12

g20 g21 g22

y00 y01

y10 y11

Filter Input Fmap Output Fmap

y02 y03

y12 y12

Halo columns

27

Winograd Performance Varies

Source: Nvidia

28

Winograd Summary

•  Winograd is an optimized computation for
convolutions

•  It can significantly reduce multiplies
–  For example, for 3x3 filter by 2.25X

•  But, each filter size is a different computation.

29

Winograd as a Transform

Transform inputs

Dot-product

Transform output

[Lavin et al., ArXiv 2015]

filter
input

GgGT can be precomputed

30

R

filter (weights)

S

FFT Flow

E

F

input fmap output fmap

H

W

an output
activation

* =

FFT(W)

F
F
T

FFT(I) X = FFT(0)

F
F
T

I
F
F
T

31

FFT Overview

•  Convert filter and input to frequency domain
to make convolution a simple multiply then
convert back to time domain.

•  Convert direct convolution O(No
2Nf

2)
computation to O(No

2log2No)

•  So note that computational benefit of FFT
decreases with decreasing size of filter

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014]

32

FFT Costs

•  Input and Filter matrices are ‘0-completed’,
–  i.e., expanded to size E+R-1 x F+S-1

•  Frequency domain matrices are same
dimensions as input, but complex.

•  FFT often reduces computation, but requires
much more memory space and bandwidth

33

Optimization opportunities

•  FFT of real matrix is symmetric allowing one
to save ½ the computes

•  Filters can be pre-computed and stored, but
convolutional filter in frequency domain is
much larger than in time domain

•  Can reuse frequency domain version of input
for creating different output channels to
avoid FFT re-computations

34

cuDNN: Speed up with Transformations

Source: Nvidia

1

DNN Accelerator
Architectures

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Highly-Parallel Compute Paradigms 2

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

3

Memory Access is the Bottleneck

ALU filter weight
fmap activation

partial sum updated partial sum

Memory Read Memory Write MAC*

* multiply-and-accumulate

4

Memory Access is the Bottleneck

ALU

Memory Read Memory Write MAC*

* multiply-and-accumulate

DRAM DRAM

•  Example: AlexNet [NIPS 2012] has 724M MACs
 à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

5

Memory Access is the Bottleneck

ALU

Memory Read Memory Write MAC*

Extra levels of local memory hierarchy

 Mem DRAM DRAM Mem

6

Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

1

Opportunities: data reuse local accumulation 1

Mem DRAM DRAM Mem

MAC*

7

Types of Data Reuse in DNN
Convolutional Reuse

CONV layers only
(sliding window)

Filter Input Fmap

Activations
Filter weights

Reuse:

8

Types of Data Reuse in DNN
Convolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers

Filter Input Fmap

Filters

2

1

Input Fmap

Activations
Filter weights

Reuse: Activations Reuse:

9

Types of Data Reuse in DNN
Filter Reuse Convolutional Reuse Fmap Reuse

CONV layers only
(sliding window)

CONV and FC layers CONV and FC layers
(batch size > 1)

Filter Input Fmap

Filters

2

1

Input Fmap

Filter

2

1

Input Fmaps

Activations
Filter weights

Reuse: Activations Reuse: Filter weights Reuse:

10

Memory Access is the Bottleneck

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

** AlexNet CONV layers
1)  Can reduce DRAM reads of filter/fmap by up to 500×**

1

Opportunities: data reuse local accumulation 1

Mem DRAM DRAM Mem

1

MAC*

11

Memory Access is the Bottleneck

1)  Can reduce DRAM reads of filter/fmap by up to 500×

2)  Partial sum accumulation does NOT have to access DRAM
1
2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

Opportunities: data reuse local accumulation 1 2

Mem DRAM DRAM Mem

MAC*

12

Memory Access is the Bottleneck

Opportunities: data reuse local accumulation

•  Example: DRAM access in AlexNet can be reduced
 from 2896M to 61M (best case)

1)  Can reduce DRAM reads of filter/fmap by up to 500×

2)  Partial sum accumulation does NOT have to access DRAM

1 2

ALU

Memory Read Memory Write

Extra levels of local memory hierarchy

2

1

Mem DRAM DRAM Mem

1
2

MAC*

13

Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM

Local Memory Hierarchy
•  Global Buffer
•  Direct inter-PE network
•  PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB

14

Low-Cost Local Data Access

DRAM Global
Buffer PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

15

Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

16

Low-Cost Local Data Access

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

* measured from a commercial 65nm process

How to exploit data reuse and local accumulation
with limited low-cost local storage?

1 2

NoC: 200 – 1000 PEs

specialized processing dataflow required!

17

Dataflow Taxonomy

•  Weight Stationary (WS)

•  Output Stationary (OS)

•  No Local Reuse (NLR)

[Chen et al., ISCA 2016]

18

Weight Stationary (WS)

•  Minimize weight read energy consumption
−  maximize convolutional and filter reuse of weights

•  Broadcast activations and accumulate psums
spatially across the PE array.

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activation

PE
Weight

19

WS Example: nn-X (NeuFlow)

[Farabet et al., ICCV 2009]

A 3×3 2D Convolution Engine

weights

activations

psums

20

•  Minimize partial sum R/W energy consumption
−  maximize local accumulation

•  Broadcast/Multicast filter weights and reuse
activations spatially across the PE array

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activation Weight

PE
Psum

21

OS Example: ShiDianNao

Top-Level Architecture PE Architecture

[Du et al., ISCA 2015]

weights activations

psums

22

•  Use a large global buffer as shared storage
−  Reduce DRAM access energy consumption

•  Multicast activations, single-cast weights, and
accumulate psums spatially across the PE array

No Local Reuse (NLR)

Activation
PE

Psum

Global Buffer
Weight

23

NLR Example: UCLA

[Zhang et al., FPGA 2015]

weights activations

psums

24

NLR Example: TPU

weights

activations

psums

[Jouppi et al., ISCA 2017]

Top-Level Architecture Matrix Multiply Unit

25

Taxonomy: More Examples

•  Weight Stationary (WS)

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016]

[ShiDianNao, ISCA 2015] [Peemen, ICCD 2013]
[Gupta, ICML 2015] [Moons, VLSI 2016]

•  Output Stationary (OS)

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

•  No Local Reuse (NLR)

[TPU, ISCA 2017]

26

Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
. E

ne
rg

y/
O

p

Dataflows
NLR WS OSA OSB OSC

Normalized
Energy/MAC

CNN Dataflows

•  Same total area •  256 PEs
•  AlexNet CONV layers •  Batch size = 16

Variants of OS

[Chen et al., ISCA 2016]

27

Energy Efficiency Comparison

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
. E

ne
rg

y/
O

p

Dataflows
NLR WS OSA OSB OSC Row

Stationary

Normalized
Energy/MAC

CNN Dataflows

Variants of OS

•  Same total area •  256 PEs
•  AlexNet CONV layers •  Batch size = 16

[Chen et al., ISCA 2016]

28

Energy-Efficient Dataflow:
Row Stationary (RS)

•  Maximize reuse and accumulation at RF

•  Optimize for overall energy efficiency
instead for only a certain data type

[Chen et al., ISCA 2016]

29

Row Stationary: Energy-efficient Dataflow 29

* =
Filter Output Fmap

Input Fmap

30

1D Row Convolution in PE 30

* =
Filter Partial Sums
a b c a b c

a b c d e

PE Reg File

b a c

d c e a b

Input Fmap

31

1D Row Convolution in PE 31

* =
Filter
a b c a b c

a b c d e

e d

PE
b a c

Reg File

b a c

a

Partial Sums
Input Fmap

32

1D Row Convolution in PE 32

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b a c

Reg File

c b d

b

 e
a

Filter
a b c

33

1D Row Convolution in PE 33

* =
a b c

a b c d e Partial Sums
Input Fmap

PE
b a c

Reg File

d c e

c

b a

Filter
a b c

34

1D Row Convolution in PE 34

PE
b a c

Reg File

d c e

c

b a

•  Maximize row convolutional reuse in RF
−  Keep a filter row and fmap sliding window in RF

•  Maximize row psum accumulation in RF

35

2D Convolution in PE Array 35

Row 1 Row 1

= *

*
PE 1

36

2D Convolution in PE Array 36

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

= *

*

*

*

PE 1

PE 2

PE 3

37

2D Convolution in PE Array 37

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1

= *

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

= *

* *

* *

* *

Row 2

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

38

2D Convolution in PE Array 38

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

39

Convolutional Reuse Maximized 39

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 4

Row 2

Row 3

Row 4

Row 5

Row 3

* * *

* * *

* * *

Filter rows are reused across PEs horizontally

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

40

Convolutional Reuse Maximized 40

Row 1

Row 2

Row 3

Row 1

Row 1

Row 2

Row 3

Row 2

Row 1

Row 2

Row 3

Row 3

* * *

* * *

* * *

Fmap rows are reused across PEs diagonally

Row 1

Row 2

Row 3

Row 2

Row 3

Row 4

Row 3

Row 4

Row 5

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

41

Maximize 2D Accumulation in PE Array 41

Row 1 Row 1

Row 2 Row 2

Row 3 Row 3

Row 1 Row 2

Row 2 Row 3

Row 3 Row 4

Row 1 Row 3

Row 2 Row 4

Row 3 Row 5

* * *

* * *

* * *

Partial sums accumulate across PEs vertically

Row 1 Row 2 Row 3

PE 1

PE 2

PE 3

PE 4

PE 5

PE 6

PE 7

PE 8

PE 9

42

Dimensions Beyond 2D Convolution
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

43

 Filter Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1 =
Psum 2 Filter 1

44

 Filter Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1 =
Psum 2 Filter 1

share the same filter row

45

 Filter Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 2

* Row 1 =
Psum 2 Filter 1

Processing in PE: concatenate fmap rows

Channel 1 * Row 1
Fmap 1 & 2

=
Psum 1 & 2 Filter 1

Row 1 Row 1 Row 1 Row 1

share the same filter row

46

Fmap Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 2 Filter 2

47

Fmap Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 2 Filter 2

share the same fmap row

48

Fmap Reuse in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 2 Filter 2

share the same fmap row

Processing in PE: interleave filter rows

*
Fmap 1

=
Psum 1 & 2 Filter 1 & 2

Row 1 Channel 1

49

Channel Accumulation in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

50

Channel Accumulation in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

accumulate psums

Row 1 Row 1 + = Row 1

51

Channel Accumulation in PE
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters

R

R

C

H

C

H

Row 1 Row 1 Channel 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 2 Row 1 Row 1
Fmap 1

* Row 1 =
Psum 1 Filter 1

Channel 1 & 2
Fmap 1

=
Psum Filter 1

* Row 1

Processing in PE: interleave channels

accumulate psums

52

DNN Processing – The Full Picture 52

Multiple fmaps:

Multiple filters:

Multiple channels:
Image 1

=
PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

Map rows from multiple fmaps, filters and channels to same PE
to exploit other forms of reuse and local accumulation

53

Optimal Mapping in Row Stationary

…
M

……

R

R

R

R

C

C

E

E

H

H

C

E

E
1

N N

1

M

H

H

C

1

CNN Configurations

Global Buffer

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Hardware Resources

Optimization
Compiler
(Mapper)

Row Stationary Mapping

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

[Chen et al., ISCA 2016]

54

Computer Architecture Analogy

Compilation Execution
DNN Shape and Size

(Program)

Mapping Input
Data

Processed
Data

Mapper
(Compiler)

DNN Accelerator
(Processor)

Dataflow, …
(Architecture)

(Binary)

Implementation
Details
(µArch)

[Chen et al., Micro Top-Picks 2017]

55

Dataflow
Simulation Results

56

Evaluate	Reuse	in	Different	Dataflows	
•  Weight	Sta7onary	

– Minimize	movement	of	filter	weights	

•  Output	Sta7onary	
– Minimize	movement	of	par5al	sums	

•  No	Local	Reuse	
–  No	PE	local	storage.	Maximize	global	buffer	size.	

•  Row	Sta7onary	
	

56

Evaluation Setup
•  same total area
•  256 PEs
•  AlexNet
•  batch size = 16

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

57

Variants of Output Stationary

Output Channels

Output Activations

E

E

M

OSB

Multiple

Multiple

Notes

E

E

M

OSA

Single

Multiple

Targeting
CONV layers

E

E

M

OSC

Multiple

Single

Targeting
FC layers

Parallel
Output Region

58

Dataflow Comparison: CONV Layers

Normalized
Energy/MAC

RS optimizes for the best overall energy efficiency

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

CNN Dataflows

psums

weights

activations

[Chen et al., ISCA 2016]

59

Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

CNN Dataflows

[Chen et al., ISCA 2016]

60

Dataflow Comparison: FC Layers

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

CNN Dataflows

RS uses at least 1.3× lower energy than other dataflows

psums

weights

activations

[Chen et al., ISCA 2016]

61

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

[Chen et al., ISCA 2016]

62

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates
[Chen et al., ISCA 2016]

63

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

RF dominates DRAM dominates
[Chen et al., ISCA 2016]

64

Row Stationary: Layer Breakdown

ALU

RF

NoC

buffer

DRAM

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7

Normalized
Energy

(1 MAC = 1)

CONV Layers FC Layers

CONV layers dominate energy consumption!

Total Energy
80% 20%

65

Hardware Architecture
for RS Dataflow

[Chen et al., ISSCC 2016]

66

Eyeriss DNN Accelerator 66

Off-Chip DRAM

…

…

…

…
…

…

Decomp

Comp ReLU

Input Fmap

Output Fmap

Filter Filt

Fmap

Psum

Psum

Global
Buffer
SRAM

108KB

64 bits

DNN Accelerator

14×12 PE Array

Link Clock Core Clock

[Chen et al., ISSCC 2016]

67

Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReLU

Input Image

Output Image

Filter

Buffer
SRAM

108KB

64 bits

DCNN Accelerator

Link Clock Core Clock

…

…

…

…
…

…

Filt

Fmap

Psum

Psum

14×12 PE Array

Filter
Delivery

Fmap
Delivery

Data Delivery Patterns

How to accommodate different shapes with fixed PE array?

68

Logical to Physical Mappings

Replication Folding

..

..

..

..
3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
..

..

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

13 5

69

Logical to Physical Mappings

Replication Folding

..

..

..

..
3

13
AlexNet
Layer 3-5

12

14

Physical PE Array

3

3

3

3

13

13

13

13

..
..

..

..
5

27
AlexNet
Layer 2

Physical PE Array

12

14

5
14

13 5

Unused PEs
are

Clock Gated

70

Data Delivery with On-Chip Network

Off-Chip DRAM

Decomp

Comp ReLU

Input Image

Output Image

Filter

Buffer
SRAM

108KB

64 bits

DCNN Accelerator

Link Clock Core Clock

…

…

…

…
…

…

Filt

Img

Psum

Psum

14×12 PE Array

Filter
Delivery

Image
Delivery

Data Delivery Patterns

Compared to Broadcast, Multicast saves >80% of NoC energy

71

Chip Spec & Measurement Results

Technology TSMC 65nm LP 1P9M
On-Chip Buffer 108 KB

of PEs 168
Scratch Pad / PE 0.5 KB
Core Frequency 100 – 250 MHz

Peak Performance 33.6 – 84.0 GOPS
Word Bit-width 16-bit Fixed-Point

Natively Supported
DNN Shapes

Filter Width: 1 – 32
Filter Height: 1 – 12
Num. Filters: 1 – 1024
Num. Channels: 1 – 1024
Horz. Stride: 1–12
Vert. Stride: 1, 2, 4

4000 µm

4000 µm

Global
Buffer

Spatial Array
(168 PEs)

[Chen et al., ISSCC 2016]

To	support	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			

72

Summary of DNN Dataflows
•  Weight Stationary

–  Minimize movement of filter weights
–  Popular with processing-in-memory architectures

•  Output Stationary
–  Minimize movement of partial sums
–  Different variants optimized for CONV or FC layers

•  No Local Reuse
–  No PE local storage à maximize global buffer size

•  Row Stationary

–  Adapt to the NN shape and hardware constraints
–  Optimized for overall system energy efficiency

73

Fused Layer
•  Dataflow across multiple layers

[Alwani et al., MICRO 2016]

1

Advanced Technology
Opportunities

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Advanced Storage Technology

•  Embedded DRAM (eDRAM)
–  Increase on-chip storage capacity

•  3D Stacked DRAM
–  e.g. Hybrid Memory Cube Memory (HMC), High

Bandwidth Memory (HBM)
–  Increase memory bandwidth

3

eDRAM (DaDianNao)

•  Advantages of eDRAM
–  2.85x higher density than SRAM
–  321x more energy-efficient than DRAM (DDR3)

•  Store weights in eDRAM (36MB)
–  Target fully connected layers since dominated by weights

[Chen et al., DaDianNao, MICRO 2014]

16 Parallel
Tiles

4

Stacked DRAM (NeuroCube)
•  NeuroCube on Hyper Memory Cube Logic Die

–  6.25x higher BW than DDR3
•  HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s)

–  Computation closer to memory (reduce energy)

[Kim et al., NeuroCube, ISCA 2016]

5

Stacked DRAM (TETRIS)

[Gao et al., Tetris, ASPLOS 2017]

Eyeriss
design

•  Explores the use of HMC with the Eyeriss spatial
architecture and row stationary dataflow

•  Allocates more area to the computation (PE array) than
on-chip memory (global buffer) to exploit the low energy
and high throughput properties of the HMC
–  1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM

6

Analog Computation

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Figure Source: ISAAC, ISCA 2016

•  Conductance = Weight
•  Voltage = Input
•  Current = Voltage × Conductance
•  Sum currents for addition

Input = V1, V2, …

Filter Weights = G1, G2, … (conductance)

Weight Stationary Dataflow

Output = Weight × Input∑

7

Memristor Computation

•  Advantages
–  High Density (< 10nm x 10nm size*)

•  ~30x smaller than SRAM**
•  1.5x smaller than DRAM**

–  Non-Volatile
–  Operates at low voltage
–  Computation within memory (in situ)

•  Reduce data movement

Use memristors as programmable
weights (resistance)

*[Govoreanu et al., IEDM 2011], **ITRS 2013

8

Memristor

[Chi et al., ISCA 2016]

9

Challenges with Memristors

•  Limited Precision
•  A/D and D/A Conversion
•  Array Size and Routing

–  Wire dominates energy for array size of 1k × 1k
–  IR drop along wire can degrade read accuracy

•  Write/programming energy
–  Multiple pulses can be costly

•  Variations & Yield
–  Device-to-device, cycle-to-cycle
–  Non-linear conductance across range

[Eryilmaz et al., ISQED 2016]

10

ISAAC

[Shafiee et al., ISCA 2016]

V1
G1 I1 = V1.G1

V2
G2

I2 = V2.G2

I = I1 + I2 =V1.G1 + V2.G2

S&H S&H S&H S&H S&H S&H S&H S&H

ADC

Shift & ADD

•  eDRAM using memristors
•  16-bit dot-product operation

–  8 x 2-bits per memristors
–  1-bit per cycle computation

11

ISAAC

[Shafiee et al., ISCA 2016]

Eight 128x128
arrays per IMA

12 IMAs per Tile

12

PRIME

[Chi et al., ISCA 2016]

•  Bit precision for each 256x256 ReRAM array
–  3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight)
–  Dynamic fixed point (6-bit output)

•  Reconfigurable to be main memory or accelerator
–  4-bit MLC computation; 1-bit SLC for storage

13

Fabricated Memristor Crossbar
•  Transistor-free metal-oxide

12x12 crossbar
–  A single-layer perceptron

(linear classification)
–  3x3 binary image
–  10 inputs x 3 outputs x 2

differential weights = 60
memristors

[Prezioso et al., Nature 2015]

14

Optical Neural Network

[Shen et al., Nature Photonics 2017]

Matrix Multiplication in the Optical Domain

The photodetection rate is 100 GHz

“In principle, such a system can be at least
two orders of magnitude faster than
electronic neural networks (which are

restricted to a GHz clock rate)”

1

DNN Model and
Hardware Co-Design

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang

2

Approaches

•  Reduce size of operands for storage/compute
–  Floating point à Fixed point
–  Bit-width reduction
–  Non-linear quantization

•  Reduce number of operations for storage/compute

–  Exploit Activation Statistics (Compression)
–  Network Pruning
–  Compact Network Architectures

3

Cost of Operations
Operation: Energy

(pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67

137
1360
4184
282

3495
1640
7700
N/A
N/A

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

4

Number Representation

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range Accuracy

10-38 – 1038 .000006%

6x10-5 - 6x104 .05%

0 – 2x109 ½

0 – 6x104 ½

0 – 127 ½

Image Source: B. Dally

5

Floating Point à Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float

exponent (8-bits) mantissa (23-bits) sign

8-bit
fixed

0 1 1 0 0 1 1 0

sign

integer
(4-bits)

mantissa (7-bits)

fractional
(3-bits)

e = 70 s = 1 m = 20482 -1.42122425 x 10-13

s = 0 12.75 m=102

Floating Point

Fixed Point

6

N-bit Precision

Accumulate +

Weight
(N-bits)

Activation
(N-bits)

N x N
multiply

2N-bits

2N+M-bits

Output
(N-bits)

Quantize
to N-bits

For no loss in precision, M is determined based on largest
filter size (in the range of 10 to 16 bits for popular DNNs)

7

Dynamic Fixed Point

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float

exponent (8-bits) mantissa (23-bits) sign

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign

integer
([7-f]-bits)

mantissa (7-bits)

fractional
(f-bits)

e = 70 s = 1 m = 20482 -1.42122425 x 10-13

f = 3 s = 0 12.75 m=102

8-bit
dynamic

fixed

0 1 1 0 0 1 1 0

sign mantissa (7-bits)

fractional
(f-bits)

f = 9 s = 0 0.19921875 m=102

Allow f to vary based on data type and layer

Floating Point

Fixed Point

8

Impact on Accuracy

[Gysel et al., Ristretto, ICLR 2016]

w/o fine tuning

Top-1 accuracy
on of CaffeNet
on ImageNet

9

Avoiding Dynamic Fixed Point

AlexNet
(Layer 6)

Image Source: Moons
et al, WACV 2016

Batch normalization ‘centers’ dynamic range

‘Centered’ dynamic ranges might reduce need for
dynamic fixed point

10

Nvidia PASCAL

“New half-precision, 16-bit
floating point instructions
deliver over 21 TeraFLOPS for
unprecedented training
performance. With 47 TOPS
(tera-operations per second)
of performance, new 8-bit
integer instructions in Pascal
allow AI algorithms to deliver
real-time responsiveness for
deep learning inference.”

– Nvidia.com (April 2016)

11

Google’s Tensor Processing Unit (TPU)

“ With its TPU Google has
seemingly focused on delivering
the data really quickly by cutting
down on precision. Specifically,
it doesn’t rely on floating point
precision like a GPU
….
Instead the chip uses integer
math…TPU used 8-bit integer.”

- Next Platform (May 19, 2016)

[Jouppi et al., ISCA 2017]

12

Precision Varies from Layer to Layer

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016]

13

Bitwidth Scaling (Speed)
Bit-Serial Processing: Reduce Bit-width à Skip Cycles

Speed up of 2.24x vs. 16-bit fixed

[Judd et al., Stripes, CAL 2016]

14

Bitwidth Scaling (Power)

[Moons et al., VLSI 2016]

Reduce Bit-width à
Shorter Critical Path
à Reduce Voltage

Power reduction of
2.56x vs. 16-bit fixed
On AlexNet Layer 2

15

Binary Nets

•  Binary Connect (BC)
–  Weights {-1,1}, Activations 32-bit float

–  MAC à addition/subtraction

–  Accuracy loss: 19% on AlexNet

•  Binarized Neural Networks (BNN)
–  Weights {-1,1}, Activations {-1,1}

–  MAC à XNOR

–  Accuracy loss: 29.8% on AlexNet

Binary Filters

[Courbariaux, arXiv 2016]

[Courbariaux, NIPS 2015]

16

Scale the Weights and Activations

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

•  Binary Weight Nets (BWN)
–  Weights {-α, α} à except first and last layers are 32-bit float
–  Activations: 32-bit float
–  α determined by the l1-norm of all weights in a layer
–  Accuracy loss: 0.8% on AlexNet

•  XNOR-Net
–  Weights {-α, α}
–  Activations {-βi, βi} à except first and last layers are 32-bit float
–  βi determined by the l1-norm of all activations across channels

for given position i of the input feature map
–  Accuracy loss: 11% on AlexNet

Hardware needs to support
both activation precisions

Scale factors (α, βi) can change per layer or position in filter

17

XNOR-Net

[Rastegari et al., BWN & XNOR-Net, ECCV 2016]

18

Ternary Nets

•  Allow for weights to be zero
–  Increase sparsity, but also increase number of bits (2-bits)

•  Ternary Weight Nets (TWN)
–  Weights {-w, 0, w} à except first and last layers are 32-bit float
–  Activations: 32-bit float

–  Accuracy loss: 3.7% on AlexNet

•  Trained Ternary Quantization (TTQ)
–  Weights {-w1, 0, w2} à except first and last layers are 32-bit float
–  Activations: 32-bit float

–  Accuracy loss: 0.6% on AlexNet

[Li et al., arXiv 2016]

[Zhu et al., ICLR 2017]

19

Non-Linear Quantization

•  Precision refers to the number of levels
–  Number of bits = log2 (number of levels)

•  Quantization: mapping data to a smaller set of levels
–  Linear, e.g., fixed-point
–  Non-linear

•  Computed
•  Table lookup

Objective: Reduce size to improve speed and/or reduce energy
while preserving accuracy

20

Computed Non-linear Quantization

Log Domain Quantization

Product = X << W Product = X * W

[Lee et al., LogNet, ICASSP 2017]

21

Log Domain Computation

Only activation
in log domain

Both weights
and activations
in log domain

[Miyashita et al., arXiv 2016]

max, bitshifts, adds/subs

22

Log Domain Quantization
•  Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits
•  Accuracy loss: 3.2% on AlexNet

[Miyashita et al., arXiv 2016],
[Lee et al., LogNet, ICASSP 2017]

Shift and Add

WS

23

Reduce Precision Overview

•  Learned mapping of data to quantization levels
(e.g., k-means)

•  Additional Properties
–  Fixed or Variable (across data types, layers, channels, etc.)

[Han et al., ICLR 2016]

Implement with
look up table

24

Non-Linear Quantization Table Lookup
Trained Quantization: Find K weights via K-means clustering

 to reduce number of unique weights per layer (weight sharing)

[Han et al., Deep Compression, ICLR 2016]

Weight
Decoder/
Dequant
U x 16b

Weight
index

(log2U-bits)
Weight

(16-bits)
Weight
Memory
CRSM x

log2U-bits
Output

Activation
(16-bits)

MAC

Input
Activation
(16-bits)

Example: AlexNet (no accuracy loss)
256 unique weights for CONV layer

16 unique weights for FC layer

Does not reduce
precision of MAC

Overhead
Smaller Weight

Memory

Consequences: Narrow weight memory and second access from (small) table

25

Summary of Reduce Precision
Category Method Weights

(# of bits)
Activations
(# of bits)

Accuracy Loss vs.
32-bit float (%)

Dynamic Fixed
Point

w/o fine-tuning 8 10 0.4
w/ fine-tuning 8 8 0.6

Reduce weight Ternary weights
Networks (TWN)

2* 32 3.7

Trained Ternary
Quantization (TTQ)

2* 32 0.6

Binary Connect (BC) 1 32 19.2
Binary Weight Net
(BWN)

1* 32 0.8

Reduce weight
and activation

Binarized Neural Net
(BNN)

1 1 29.8

XNOR-Net 1* 1 11
Non-Linear LogNet 5(conv), 4(fc) 4 3.2

Weight Sharing 8(conv), 4(fc) 16 0

* first and last layers are 32-bit float

Full list @ [Sze et al., arXiv, 2017]

26

Reduce Number of Ops and Weights

•  Exploit Activation Statistics
•  Network Pruning
•  Compact Network Architectures
•  Knowledge Distillation

27

Sparsity in Fmaps

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

28

…

…

…

…
…

…

ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108KB

14×12 PE Array

Link Clock Core Clock

I/O Compression in Eyeriss

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b 5b 16b 5b 16b
2 12 4 53 2 22 0

Run Level Run Level Run Level Term

Off-Chip DRAM
64 bits

Decomp

Comp

[Chen et al., ISSCC 2016]

DCNN Accelerator

29

Compression Reduces DRAM BW

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access

(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

[Chen et al., ISSCC 2016]

Simple RLC within 5% - 10% of theoretical entropy limit

30

Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

[Chen et al., ISSCC 2016]

31

Cnvlutin
•  Process Convolution Layers
•  Built on top of DaDianNao (4.49% area overhead)
•  Speed up of 1.37x (1.52x with activation pruning)

[Albericio et al., ISCA 2016]

32

Pruning Activations

[Reagen et al., ISCA 2016]

Remove small activation values

[Albericio et al., ISCA 2016]

Speed up 11% (ImageNet) Reduce power 2x (MNIST)

Minerva
Cnvlutin

33

Pruning – Make Weights Sparse

•  Optimal Brain Damage
1.  Choose a reasonable network

architecture
2.  Train network until reasonable

solution obtained
3.  Compute the second derivative

for each weight
4.  Compute saliencies (i.e. impact

on training error) for each weight
5.  Sort weights by saliency and

delete low-saliency weights
6.  Iterate to step 2

[Lecun et al., NIPS 1989]

retraining

34

Pruning – Make Weights Sparse

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet
Weight Reduction: CONV layers 2.7x, FC layers 9.9x
(Most reduction on fully connected layers)
Overall: 9x weight reduction, 3x MAC reduction

[Han et al., NIPS 2015]

35

Speed up of Weight Pruning on CPU/GPU

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

Batch size = 1

On Fully Connected Layers Only
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU

[Han et al., NIPS 2015]

36

Key Metrics for Embedded DNN

•  Accuracy à Measured on Dataset
•  Speed à Number of MACs
•  Storage Footprint à Number of Weights
•  Energy à ?

37

Energy-Aware Pruning

•  # of Weights alone is not a good metric for
energy
–  Example (AlexNet):

•  # of Weights (FC Layer) > # of Weights (CONV layer)
•  Energy (FC Layer) < Energy (CONV layer)

•  Use energy evaluation method to estimate DNN
energy
–  Account for data movement

[Yang et al., CVPR 2017]

38

Energy-Evaluation Methodology

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Evaluation tool available at http://eyeriss.mit.edu/energy.html

39

Key Observations

•  Number of weights alone is not a good metric for energy
•  All data types should be considered

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa&on	
10%	

Energy	Consump&on	
of	GoogLeNet	

[Yang et al., CVPR 2017]

40 [Yang et al., CVPR 2017]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less
energy than shallower CNNs with more weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	

41

Magnitude-based Weight Pruning

Reduce number of weights by removing small magnitude weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

42

Energy-Aware Pruning

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x

Remove weights from layers in order of highest to lowest energy
3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet

DNN Models available at http://eyeriss.mit.edu/energy.html

43

Energy Estimation Tool
Website: https://energyestimation.mit.edu/

Input DNN Configuration File

Output DNN energy breakdown across layers

[Yang et al., CVPR 2017]

44

Compression of Weights & Activations
•  Compress weights and activations between DRAM

and accelerator
•  Variable Length / Huffman Coding

•  Tested on AlexNet à 2× overall BW Reduction

[Moons et al., VLSI 2016; Han et al., ICLR 2016]

Value: 16’b0 à Compressed Code: {1’b0}

Value: 16’bx à Compressed Code: {1’b1, 16’bx}

Example:

45

Sparse Matrix-Vector DSP
•  Use CSC rather than CSR for SpMxV

[Dorrance et al., FPGA 2014]

Compressed Sparse Column (CSC) Compressed Sparse Row (CSR)

Reduce memory bandwidth (when not M >> N)
For DNN, M = # of filters, N = # of weights per filter

M

N

46

•  Process Fully Connected Layers (after Deep Compression)
•  Store weights column-wise in Run Length format
•  Read relative column when input is non-zero

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016]

Input

Weights

Output

EIE: A Sparse Linear Algebra Engine

Dequantize Weight

Keep track of location

Output Stationary Dataflow

Supports Fully Connected Layers Only

47

Sparse CNN (SCNN)

[Parashar et al., ISCA 2017]
Input Stationary Dataflow

Supports Convolutional Layers

=

x

a

b

d

e

f

c
y

z

xa *

ya *

za *

xb *

yb *

zb *

…

Scatter

network

Accumulate MULs

PE frontend PE backend

Densely Packed

Storage of Weights

and Activations

All-to all

Multiplication of

Weights and Activations

Mechanism to Add to

Scattered Partial Sums

48

Structured/Coarse-Grained Pruning
•  Scalpel

–  Prune to match the underlying data-parallel hardware
organization for speed up

[Yu et al., ISCA 2017]

Dense weights Sparse weights

Example: 2-way SIMD

49

Compact Network Architectures

•  Break large convolutional layers into a series
of smaller convolutional layers
–  Fewer weights, but same effective receptive field

•  Before Training: Network Architecture Design

•  After Training: Decompose Trained Filters

50

Network Architecture Design

5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially
GoogleNet/Inception v3

VGG-16

Build Network with series of Small Filters

separable
filters

51

Network Architecture Design

Figure Source:
Stanford cs231n

Reduce size and computation with 1x1 Filter (bottleneck)

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

52

Network Architecture Design

Figure Source:
Stanford cs231n

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

Reduce size and computation with 1x1 Filter (bottleneck)

53

Network Architecture Design

Figure Source:
Stanford cs231n

[Szegedy et al., ArXiV 2014 / CVPR 2015]

Used in Network In Network(NiN) and GoogLeNet
[Lin et al., ArXiV 2013 / ICLR 2014]

Reduce size and computation with 1x1 Filter (bottleneck)

54

Bottleneck in Popular DNN models

ResNet

GoogleNet

compress

expand

compress

55

SqueezeNet

[F.N. Iandola et al., ArXiv, 2016]]

Fire Module

Reduce weights by reducing number of input
channels by “squeezing” with 1x1
50x fewer weights than AlexNet

(no accuracy loss)

56 [Yang et al., CVPR 2017]

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less
energy than shallower CNNs with more weights

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	

57

Decompose Trained Filters
After training, perform low-rank approximation by applying tensor
decomposition to weight kernel; then fine-tune weights for accuracy

[Lebedev et al., ICLR 2015] R = canonical rank

58

Decompose Trained Filters

[Denton et al., NIPS 2014]

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1,
CONV2 layers

•  Reduce size by 5 - 13x for FC layer
•  < 1% drop in accuracy

Original Approx.
Visualization of Filters

59

Decompose Trained Filters on Phone

[Kim et al., ICLR 2016]

Tucker Decomposition

60

Knowledge Distillation

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]

&RPSOH[
DNN B

(teacher)

6LPSOH DNN
(student)

so
ftm

ax

so
ftm

ax

&RPSOH[
DNN A

(teacher) so
ftm

ax

VFRUHV
class
probabilities

Try to match

1

Benchmarking Metrics
for DNN Hardware

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen

2

Metrics Overview
•  How can we compare designs?
•  Target Metrics

–  Accuracy
–  Power
–  Throughput
–  Cost

•  Additional Factors
–  External memory bandwidth
–  Required on-chip storage
–  Utilization of cores

3

Download Benchmarking Data

•  Input (http://image-net.org/)
–  Sample subset from ImageNet Validation Dataset

•  Widely accepted state-of-the-art DNNs
(Model Zoo: http://caffe.berkeleyvision.org/)
–  AlexNet
–  VGG-16
–  GoogleNet-v1
–  ResNet-50

4

Metrics for DNN Algorithm

•  Accuracy
•  Network Architecture

–  # Layers, filter size, # of filters, # of channels

•  # of Weights (storage capacity)
–  Number of non-zero (NZ) weights

•  # of MACs (operations)
–  Number of non-zero (NZ) MACS

5

Metrics of DNN Algorithms
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
Input 227x227 224x224 224x224 224x224
of CONV Layers 5 16 21 49
Filter Sizes 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1, 4 1 1, 2 1, 2
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of FC layers 3 3 1 1
of Weights 58.6M 124M 1M 2M
of MACs 58.6M 124M 1M 2M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

6

Metrics of DNN Algorithms
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02
of CONV Layers 5 16 21 49
of Weights 2.3M 14.7M 6.0M 23.5M
of MACs 666M 15.3G 1.43G 3.86G
of NZ MACs** 394M 7.3G 806M 1.5G
of FC layers 3 3 1 1
of Weights 58.6M 124M 1M 2M
of MACs 58.6M 124M 1M 2M
of NZ MACs** 14.4M 17.7M 639k 1.8M
Total Weights 61M 138M 7M 25.5M
Total MACs 724M 15.5G 1.43G 3.9G
of NZ MACs** 409M 7.3G 806M 1.5G

**# of NZ MACs computed based on 50,000 validation images
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks

7

Metrics of DNN Algorithms
Metrics AlexNet AlexNet (sparse)
Accuracy (top-5 error) 19.8 19.8
of Conv Layers 5 5
of Weights 2.3M 2.3M
of MACs 666M 666M
of NZ weights 2.3M 863k
of NZ MACs 394M 207M
of FC layers 3 3
of Weights 58.6M 58.6M
of MACs 58.6M 58.6M
of NZ weights 58.6M 5.9M
of NZ MACs 14.4M 2.1M
Total Weights 61M 61M
Total MACs 724M 724M
of NZ weights 61M 6.8M
of NZ MACs 409M 209M

of NZ MACs computed based on 50,000 validation images

8

Metrics for DNN Hardware

•  Measure energy and DRAM access relative to
number of non-zero MACs and bit-width of MACs
–  Account for impact of sparsity in weights and activations
–  Normalize DRAM access based on operand size

•  Energy Efficiency of Design
–  pJ/(non-zero weight & activation)

•  External Memory Bandwidth
–  DRAM operand access/(non-zero weight & activation)

•  Area Efficiency
–  Total chip mm2/multi (also include process technology)
–  Accounts for on-chip memory

9

ASIC Benchmark (e.g. Eyeriss)

ASIC Specs
Process Technology 65nm LP TSMC (1.0V)
Clock Frequency (MHz) 200
Number of Multipliers 168
Total core area (mm2) /total # of multiplier 0.073
Total on-Chip memory (kB) / total # of multiplier 1.14
Measured or Simulated Measured
If Simulated, Syn or PnR? Which corner? n/a

10

ASIC Benchmark (e.g. Eyeriss)

Metric Units L1 L2 L3 L4 L5 Overall*
Batch Size # 4
Bit/Operand # 16
Energy/
non-zero MACs
(weight & act)

pJ/MAC 16.5 18.2 29.5 41.6 32.3 21.7

DRAM access/
non-zero MACs

Operands/
MAC 0.006 0.003 0.007 0.010 0.008 0.005

Runtime ms 20.9 41.9 23.6 18.4 10.5 115.3
Power mW 332 288 266 235 236 278

Layer by layer breakdown for AlexNet CONV layers

* Weighted average of CONV layers

11

Website to Summarize Results

•  http://eyeriss.mit.edu/benchmarking.html
•  Send results or feedback to: eyeriss@mit.edu

Metric Units Input
Name of CNN Text AlexNet
of Images Tested # 100
Bits per operand # 16
Batch Size # 4
of Non Zero MACs # 409M
Runtime ms 115.3
Utilization vs. Peak % 41
Power mW 278
Energy/non-zero
MACs

pJ/MAC 21.7

DRAM access/non-
zero MACs

operands
/MAC

0.005

ASIC Specs Input
Process Technology 65nm LP

TSMC (1.0V)
Clock Frequency
(MHz)

200

Number of Multipliers 168

Core area (mm2) /
multiplier

0.073

On-Chip memory
(kB) / multiplier

1.14

Measured or
Simulated

Measured

If Simulated, Syn or
PnR? Which corner?

n/a

12

Implementation-Specific Metrics

Metric Units AlexNet
Device Text Xilinx Virtex-7 XC7V690T
Utilization DSP # 2,240

BRAM # 1,024
LUT # 186,251
FF # 205,704

Performance Density GOPs/slice 8.12E-04

Different devices may have implementation-specific metrics

Example: FPGAs

1

Tutorial Summary
•  DNNs are a critical component in the AI revolution, delivering

record breaking accuracy on many important AI tasks for a wide
range of applications; however, it comes at the cost of high
computational complexity

•  Efficient processing of DNNs is an important area of research with
many promising opportunities for innovation at various levels of
hardware design, including algorithm co-design

•  When considering different DNN solutions it is important to evaluate
with the appropriate workload in term of both input and model,
and recognize that they are evolving rapidly.

•  It’s important to consider a comprehensive set of metrics when
evaluating different DNN solutions: accuracy, speed, energy, and
cost

2

Resources

•  Eyeriss Project: http://eyeriss.mit.edu
–  Tutorial Slides

–  Benchmarking

–  Energy modeling

–  Mailing List for updates
•  http://mailman.mit.edu/mailman/listinfo/eems-news

–  Paper based on today’s tutorial:
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017

1

References

ISCA Tutorial (2017)

Website: http://eyeriss.mit.edu/tutorial.html

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang

2

References (Alphabetical by Author)
•  Albericio, Jorge, et al. "Cnvlutin: ineffectual-neuron-free deep neural network computing," ISCA, 2016.
•  Alwani, Manoj, et al., "Fused Layer CNN Accelerators," MICRO, 2016
•  Chakradhar, Srimat, et al., "A dynamically configurable coprocessor for convolutional neural networks,"

ISCA, 2010
•  Chen, Tianshi, et al., "DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-

learning," ASPLOS, 2014
•  Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional

neural networks,” ISSCC, 2016.
•  Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow

for Convolutional Neural Networks,” ISCA, 2016.
•  Chen, Yunji, et al. "Dadiannao: A machine-learning supercomputer,” MICRO, 2014.
•  Chi, Ping, et al. "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in

ReRAM-based Main Memory," ISCA 2016.
•  Cong, Jason, and Bingjun Xiao. "Minimizing computation in convolutional neural networks." International

Conference on Artificial Neural Networks. Springer International Publishing, 2014.
•  Courbariaux, Matthieu, and Yoshua Bengio. "Binarynet: Training deep neural networks with weights and

activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
•  Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. "Binaryconnect: Training deep neural

networks with binary weights during propagations," NIPS, 2015.

3

References (Alphabetical by Author)
•  Dean, Jeffrey, et al., "Large Scale Distributed Deep Networks," NIPS, 2012
•  Denton, Emily L., et al. "Exploiting linear structure within convolutional networks for efficient

evaluation," NIPS, 2014.
•  Dorrance, Richard, Fengbo Ren, and Dejan Marković. "A scalable sparse matrix-vector multiplication

kernel for energy-efficient sparse-blas on FPGAs." Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays. ACM, 2014.

•  Du, Zidong, et al., "ShiDianNao: shifting vision processing closer to the sensor," ISCA, 2015
•  Eryilmaz, Sukru Burc, et al. "Neuromorphic architectures with electronic synapses.” ISQED, 2016.
•  Esser, Steven K., et al., "Convolutional networks for fast, energy-efficient neuromorphic computing,"

PNAS 2016
•  Farabet, Clement, et al., "An FPGA-Based Stream Processor for Embedded Real-Time Vision with

Convolutional Networks," ICCV 2009
•  Gokhale, Vinatak, et al., "A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks," CVPR Workshop,

2014
•  Govoreanu, B., et al. "10× 10nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability

and low-energy operation,” IEDM, 2011.
•  Gupta, Suyog, et al., "Deep Learning with Limited Numerical Precision," ICML, 2015
•  Gysel, Philipp, Mohammad Motamedi, and Soheil Ghiasi. "Hardware-oriented Approximation of

Convolutional Neural Networks." arXiv preprint arXiv:1604.03168 (2016).
•  Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network," ISCA, 2016.

4

References (Alphabetical by Author)
•  Han, Song, et al. "Learning both weights and connections for efficient neural network,” NIPS, 2015.
•  Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with

pruning, trained quantization and huffman coding," ICLR, 2016.
•  He, Kaiming, et al. "Deep residual learning for image recognition," CVPR, 2016.
•  Horowitz, Mark. “Computing's energy problem (and what we can do about it),” ISSCC, 2014.

•  Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model
size," ICLR, 2017.

•  Ioffe, Sergey, and Szegedy, Christian, "Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift," ICML, 2015

•  Jermyn, Michael, et al., "Neural networks improve brain cancer detection with Raman spectroscopy in the
presence of operating room light artifacts," Journal of Biomedical Optics, 2016

•  Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing unit,” ISCA, 2017.
•  Judd, Patrick, et al. "Reduced-precision strategies for bounded memory in deep neural nets." arXiv

preprint arXiv:1511.05236 (2015).
•  Judd, Patrick, Jorge Albericio, and Andreas Moshovos. "Stripes: Bit-serial deep neural network

computing." IEEE Computer Architecture Letters (2016).
•  Kim, Duckhwan, et al. "Neurocube: a programmable digital neuromorphic architecture with high-density

3D memory." ISCA 2016
•  Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and low power mobile

applications." ICLR 2016

5

References (Alphabetical by Author)
•  Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional

neural networks," NIPS, 2012.
•  Lavin, Andrew, and Gray, Scott, "Fast Algorithms for Convolutional Neural Networks," arXiv preprint arXiv:

1509.09308 (2015)
•  LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE

86.11 (1998): 2278-2324.
•  LeCun, Yann, et al. "Optimal brain damage," NIPS, 1989.
•  Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).
•  Mathieu, Michael, Mikael Henaff, and Yann LeCun. "Fast training of convolutional networks through FFTs."

arXiv preprint arXiv:1312.5851 (2013).
•  Merola, Paul A., et al. "Artificial brains. A million spiking-neuron integrated circuit with a scalable

communication network and interface," Science, 2014
•  Moons, Bert, and Marian Verhelst. "A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale

ConvNets." Symposium on VLSI Circuits (VLSI-Circuits), 2016.
•  Moons, Bert, et al. "Energy-efficient ConvNets through approximate computing,” WACV, 2016.
•  Parashar, Angshuman, et al. "SCNN: An Accelerator for Compressed-sparse Convolutional Neural

Networks." ISCA, 2017.
•  Park, Seongwook, et al., "A 1.93TOPS/W Scalable Deep Learning/Inference Processor with Tetra-Parallel

MIMD Architecture for Big-Data Applications," ISSCC, 2015
•  Peemen, Maurice, et al., "Memory-centric accelerator design for convolutional neural networks," ICCD, 2013
•  Prezioso, Mirko, et al. "Training and operation of an integrated neuromorphic network based on metal-oxide

memristors." Nature 521.7550 (2015): 61-64.

6

References (Alphabetical by Author)
•  Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural

Networks,” ECCV, 2016
•  Reagen, Brandon, et al. "Minerva: Enabling low-power, highly-accurate deep neural network accelerators,”

ISCA, 2016.
•  Rhu, Minsoo, et al., "vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network

Design," MICRO, 2016
•  Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of

Computer Vision 115.3 (2015): 211-252.
•  Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional

networks,” CVPR, 2014.
•  Shafiee, Ali, et al. "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in

Crossbars." Proc. ISCA. 2016.
•  Shen, Yichen, et al. "Deep learning with coherent nanophotonic circuits." Nature Photonics, 2017.
•  Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014).
•  Szegedy, Christian, et al. "Going deeper with convolutions,” CVPR, 2015.
•  Vasilache, Nicolas, et al. "Fast convolutional nets with fbfft: A GPU performance evaluation." arXiv preprint

arXiv:1412.7580 (2014).
•  Yang, Tien-Ju, et al. "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware

Pruning," CVPR, 2017
•  Yu, Jiecao, et al. "Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism." ISCA, 2017.
•  Zhang, Chen, et al., "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks,"

FPGA, 2015

