
1 

Hardware Architectures for 
Deep Neural Networks 

ISCA Tutorial 

June 24, 2017 

Website: http://eyeriss.mit.edu/tutorial.html  



2 

Speakers and Contributors 2 

Yu-Hsin Chen 
PhD Candidate 

MIT 

Vivienne Sze 
Professor 

MIT 

Joel Emer 

Professor 
MIT 

Senior Distinguished  
Research Scientist 

NVIDIA 

Tien-Ju Yang 
PhD Candidate 

MIT 



3 

Outline 

•  Overview of Deep Neural Networks 

•  DNN Development Resources 

•  Survey of DNN Hardware 

•  DNN Accelerators 

•  DNN Model and Hardware Co-Design 
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Participant Takeaways 
•  Understand the key design considerations for 

DNNs  

•  Be able to evaluate different implementations of 
DNN with benchmarks and comparison metrics  

•  Understand the tradeoffs between various 
architectures and platforms 

•  Assess the utility of various optimization 
approaches 

•  Understand recent implementation trends and 
opportunities 
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Resources 

•  Eyeriss Project: http://eyeriss.mit.edu  
–  Tutorial Slides 

–  Benchmarking 

–  Energy modeling 

–  Mailing List for updates 
•  http://mailman.mit.edu/mailman/listinfo/eems-news  

–  Paper based on today’s tutorial: 
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing 

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017 
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Background of  
Deep Neural Networks 
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Artificial Intelligence 

Artificial Intelligence 

“The science and engineering of creating 
intelligent machines” 
            - John McCarthy, 1956 
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Artificial Intelligence 

AI and Machine Learning 

Machine Learning 

“Field of study that gives computers the ability 
to learn without being explicitly programmed” 

–  Arthur Samuel, 1959 
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Artificial Intelligence 

Brain-Inspired Machine Learning 

Machine Learning 

Brain-Inspired 

An algorithm that takes its basic 
functionality from our understanding 
of how the brain operates 
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How Does the Brain Work? 

•  The basic computational unit of the brain is a neuron 
à 86B neurons in the brain 

•  Neurons are connected with nearly 1014 – 1015 synapses 
•  Neurons receive input signal from dendrites and produce 

output signal along axon, which interact with the dendrites of 
other neurons via synaptic weights 

•  Synaptic weights – learnable & control influence strength 

Image Source: Stanford 
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Artificial Intelligence 

Spiking-based Machine Learning 

Machine Learning 

Brain-Inspired 

Spiking 
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Spiking Architecture 

•  Brain-inspired 
•  Integrate and fire 
•  Example: IBM TrueNorth 

[Merolla et al., Science 2014; Esser et al., PNAS 2016] 

http://www.research.ibm.com/articles/brain-chip.shtml 
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Artificial Intelligence 

Machine Learning with Neural Networks 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 
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Neural Networks: Weighted Sum 

Image Source: Stanford 
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Many Weighted Sums 

Image Source: Stanford 
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Artificial Intelligence 

Deep Learning 

Machine Learning 

Brain-Inspired 

Spiking 
 

Neural 
Networks 

Deep 
Learning 
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What is Deep Learning? 

Image 
“Volvo 
XC90” 

Image Source: [Lee et al., Comm. ACM 2011] 
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Why is Deep Learning Hot Now? 

350M images 
uploaded per 
day 

2.5 Petabytes 
of customer 
data hourly 

300 hours of 
video uploaded 
every minute 

Big Data 
Availability 

GPU 
Acceleration 

New ML 
Techniques 
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ImageNet Challenge 

Image Classification Task: 
 1.2M training images • 1000 object categories 

 

Object Detection Task: 
 456k training images • 200 object categories 
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ImageNet: Image Classification Task 
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Top 5 Classification Error (%) 
large error rate reduction 
due to Deep CNN 

[Russakovsky et al., IJCV 2015] 

Deep CNN-based designs Hand-crafted feature- 
based designs 
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GPU Usage for ImageNet Challenge 
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Established Applications 

•  Image 
o  Classification: image to object class 
o  Recognition: same as classification (except for faces) 
o  Detection: assigning bounding boxes to objects 
o  Segmentation: assigning object class to every pixel 

•  Speech & Language 
o  Speech Recognition: audio to text 
o  Translation 
o  Natural Language Processing: text to meaning 
o  Audio Generation: text to audio 

•  Games 
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Deep Learning on Games 

Google DeepMind AlphaGo 
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Emerging Applications 
•  Medical (Cancer Detection, Pre-Natal) 

•  Finance (Trading, Energy Forecasting, Risk) 

•  Infrastructure (Structure Safety and Traffic) 

•  Weather Forecasting and Event Detection 

http://www.nextplatform.com/2016/09/14/next-wave-deep-learning-applications/ 
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Deep Learning for Self-driving Cars 
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Opportunities 

From EE Times – September 27, 2016 
 
”Today the job of training machine learning models is 
limited by compute, if we had faster processors we’d 
run bigger models…in practice we train on a reasonable 
subset of data that can finish in a matter of months. We 
could use improvements of several orders of magnitude 
– 100x or greater.” 

– Greg Diamos, Senior Researcher, SVAIL, Baidu 
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Overview of  
Deep Neural Networks 
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DNN Timeline 

•  1940s: Neural networks were proposed 
•  1960s: Deep neural networks were proposed 
•  1989: Neural network for recognizing digits (LeNet) 
•  1990s: Hardware for shallow neural nets 

–  Example: Intel ETANN (1992) 

•  2011: Breakthrough DNN-based speech recognition 
–  Microsoft real-time speech translation  

•  2012: DNNs for vision supplanting traditional ML 
–  AlexNet for image classification 

•  2014+: Rise of DNN accelerator research 
–  Examples: Neuflow, DianNao, etc. 
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Publications at Architecture Conferences 

•  MICRO, ISCA, HPCA, ASPLOS 
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So Many Neural Networks! 

http://www.asimovinstitute.org/neural-network-zoo/ 
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DNN Terminology 101 

Image Source: Stanford 

Neurons 
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DNN Terminology 101 

Image Source: Stanford 

Synapses 
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DNN Terminology 101 

Image Source: Stanford 

Each synapse has a weight for neuron activation 
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DNN Terminology 101 

Image Source: Stanford 

Weight Sharing: multiple synapses use the same weight value 
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DNN Terminology 101 

Image Source: Stanford 

L1 Neuron outputs 
a.k.a. Activations L1 Neuron inputs 

e.g. image pixels 

Layer 1 
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DNN Terminology 101 

Image Source: Stanford 

L2 Output  
Activations 

L2 Input  
Activations Layer 2 
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DNN Terminology 101 

Image Source: Stanford 

Fully-Connected: all i/p neurons connected to all o/p neurons 

Sparsely-Connected 
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DNN Terminology 101 

Image Source: Stanford 

Feed Forward Feedback 
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Popular Types of DNNs 

•  Fully-Connected NN 
–  feed forward, a.k.a. multilayer perceptron (MLP) 

•  Convolutional NN (CNN) 
–  feed forward, sparsely-connected w/ weight sharing 

•  Recurrent NN (RNN)  
–  feedback 

•  Long Short-Term Memory (LSTM) 
–  feedback + storage 
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Inference vs. Training  

•  Training: Determine weights 
–  Supervised:  

•  Training set has inputs and outputs, i.e., labeled 

–  Unsupervised:  
•  Training set is unlabeled 

–  Semi-supervised:  
•  Training set is partially labeled  

–  Reinforcement: 
•  Output assessed via rewards and punishments 

•  Inference: Apply weights to determine output  
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Deep Convolutional Neural Networks 

Modern Deep CNN: 5 – 1000 Layers 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

1 – 3 Layers 
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Convolution Activation 

×	
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

Fully 
Connected 

Activation 

×	
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Deep Convolutional Neural Networks 

Classes FC 
Layer 

CONV 
Layer 

CONV 
Layer 

High-Level 
Features 

Optional layers in between  
CONV and/or FC layers 

NORM 
Layer 

POOL 
Layer 

Normalization Pooling 
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Deep Convolutional Neural Networks 

Classes 
High-Level 
Features FC 

Layer 
CONV 
Layer 

CONV 
Layer 

NORM 
Layer 

POOL 
Layer 

Convolutions account for more 
than 90% of overall computation, 
dominating runtime and energy 
consumption 
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Convolution (CONV) Layer 

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 
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R 

filter (weights) 

Convolution (CONV) Layer 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 
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R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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H 
R 

filter (weights) 

S 

Convolution (CONV) Layer 

E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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H 

Convolution (CONV) Layer 

R 

S 

C 

input fmap 

output fmap 
C filter 

Many Input Channels (C) 

E 

W F 
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Convolution (CONV) Layer 

E 

output fmap many 
filters (M) 

Many 
Output Channels (M) 
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Convolution (CONV) Layer 

…
 

M 

…
 

Many 
Input fmaps (N) Many 
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CNN Decoder Ring 

•  N – Number of input fmaps/output fmaps (batch size) 
•  C – Number of 2-D input fmaps /filters (channels) 
•  H – Height of input fmap (activations)  
•  W – Width of input fmap (activations) 
•  R – Height of 2-D filter (weights) 
•  S – Width of 2-D filter (weights) 
•  M – Number of 2-D output fmaps (channels) 
•  E – Height of output fmap  (activations) 
•  F – Width of output fmap (activations) 
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CONV Layer Tensor Computation 
Input fmaps (I)  

Filter weights (W) 
Output fmaps (O) 

Biases (B) 
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CONV Layer Implementation 

Naïve 7-layer for-loop implementation: 

for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																O[n][m][x][y]	=	B[m];	
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								for	(k=0;	k<C;	k++)	{	
																												O[n][m][x][y]	+=	I[n][k][Ux+i][Uy+j]	×	W[m][k][i][j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	Activation(O[n][m][x][y]);	
												}																	
								}	
				}	
}	

for each output fmap value 

convolve  
a window 
and apply 
activation 
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Traditional Activation Functions 

Image Source: Caffe Tutorial 

Sigmoid 
1 

-1 

0 

0 1 -1 

y=1/(1+e-x)	

Hyperbolic Tangent 
1 

-1 

0 

0 1 -1 

y=(ex-e-x)/(ex+e-x)	
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Modern Activation Functions 

Rectified Linear Unit 
(ReLU) 

1 

-1 

0 

0 1 -1 

y=max(0,x)	

Leaky ReLU 

1 

-1 

0 

0 1 -1 

y=max(αx,x)	

Exponential LU 

1 

-1 

0 

0 1 -1 
				x,							
				α(ex-1),	

x≥0	
x<0	y=	

α = small const. (e.g. 0.1) 

Image Source: Caffe Tutorial 
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Fully-Connected (FC) Layer 
•  Height and width of output fmaps are 1 (E = F = 1) 
•  Filters as large as input fmaps (R = H, S = W) 
•  Implementation: Matrix Multiplication 

M 

CHW 

CHW 

N 

Filters Input fmaps 

× 

N 

Output fmaps 

M = 
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H 
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Pooling (POOL) Layer 

Image Source: Caffe Tutorial 

•  Reduce resolution of each channel independently 
•  Overlapping or non-overlapping à depending on stride 

Increases translation-invariance and noise-resilience  
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POOL Layer Implementation 

Naïve 6-layer for-loop max-pooling implementation: 
for	(n=0;	n<N;	n++)	{	
				for	(m=0;	m<M;	m++)	{	
								for	(x=0;	x<F;	x++)	{	
												for	(y=0;	y<E;	y++)	{	
	
																max	=	-Inf;		
																for	(i=0;	i<R;	i++)	{	
																				for	(j=0;	j<S;	j++)	{	
																								if	(I[n][m][Ux+i][Uy+j]	>	max)	{	
																												max	=	I[n][m][Ux+i][Uy+j];	
																								}	
																				}	
																}	
	
																O[n][m][x][y]	=	max;	
												}																	
								}	
				}	
}	

for each pooled value 

find the max  
with in a window 
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Normalization (NORM) Layer 

•  Batch Normalization (BN) 
–  Normalize activations towards mean=0 and std. 

dev.=1 based on the statistics of the training dataset 

–  put in between CONV/FC and Activation function 

[Ioffe et al., ICML 2015] 

CONV 
Layer 

Convolution Activation 

×	
BN 

Believed to be key to getting high accuracy and  
faster training on very deep neural networks. 
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BN Layer Implementation 
•  The normalized value is further scaled and shifted, the 

parameters of which are learned from training 

data mean 

data std. dev. 

learned scale factor 

learned shift factor 
small const. to avoid 
numerical problems 
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Normalization (NORM) Layer 

•  Local Response Normalization (LRN) 
•  Tries to mimic the inhibition scheme in the brain 

Image Source: Caffe Tutorial 

Now deprecated! 
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Relevant Components for Tutorial 

•  Typical operations that we will discuss: 
–  Convolution (CONV) 
–  Fully-Connected (FC) 
–  Max Pooling 
–  ReLU 
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Survey of DNN 
Development Resources 

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Popular DNNs 

•  LeNet (1998) 
•  AlexNet (2012) 
•  OverFeat (2013) 
•  VGGNet (2014) 
•  GoogleNet (2014) 
•  ResNet (2015) 
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[O. Russakovsky et al., IJCV 2015] 
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ImageNet: Large Scale Visual 
Recognition Challenge (ILSVRC) 
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LeNet-5  

[Y. Lecun et al, Proceedings of the IEEE, 1998] 

CONV Layers: 2 
Fully Connected Layers: 2 
Weights: 60k 
MACs: 341k 
Sigmoid used for non-linearity 

Digit Classification! 

2x2  
average 
pooling 

six  
5x5 filters 

2x2  
average 
pooling 

six  
5x5 filters 
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AlexNet 
CONV Layers: 5 
Fully Connected Layers: 3 
Weights: 61M 
MACs: 724M 
ReLU used for non-linearity [Krizhevsky et al., NIPS, 2012] 

ILSCVR12 Winner 

Uses Local Response Normalization (LRN) 
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Large Sizes with Varying Shapes 5 

Layer Filter Size (RxS) # Filters (M) # Channels (C) Stride 
1 11x11 96 3 4 
2 5x5 256 48 1 
3 3x3 384 256 1 
4 3x3 384 192 1 
5 3x3 256 192 1 

AlexNet	Convolu7onal	Layer	Configura7ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

105M	MACs	 224M	MACs	 150M	MACs	
[Krizhevsky et al., NIPS, 2012] 
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VGG-16 
CONV Layers: 13 
Fully Connected Layers: 3 
Weights: 138M 
MACs: 15.5G 

[Simonyan et al., arXiv 2014, ICLR 2015] 
Image Source: http://www.cs.toronto.edu/~frossard/post/vgg16/ 

Also, 19 layer version 

More Layers à Deeper! 

Reduce # of weights 
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GoogLeNet (v1) 

[Szegedy et al., arXiv 2014, CVPR 2015] 

Also, v2, v3 and v4 
ILSVRC14 Winner 

parallel filters of different size has the effect of 
processing image at different scales 

1x1 ‘bottleneck’ to 
reduce number of 
weights 

Inception  
Module 

CONV Layers: 21 (depth), 57 (total) 
Fully Connected Layers: 1 
Weights: 7.0M 
MACs: 1.43G 
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GoogLeNet (v1) 
CONV Layers: 21 (depth), 57 (total) 
Fully Connected Layers: 1 
Weights: 7.0M 
MACs: 1.43G 

[Szegedy et al., arXiv 2014, CVPR 2015] 

Also, v2, v3 and v4 
ILSVRC14 Winner 

9 Inception Layers 

3 CONV layers 1 FC layer 
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ResNet-50 
CONV Layers: 49 
Fully Connected Layers: 1 
Weights: 25.5M 
MACs: 3.9G 

[He et al., arXiv 2015, CVPR 2016] 

Also, 34,152 and 1202 layer versions 
ILSVRC15 Winner 

Short Cut Module 

Helps address the vanishing gradient 
challenge for training very deep networks 

1 CONV layer 

1 FC layer 

16 Short  
Cut Layers 

ResNet-34 

3x3 CONV 

ReLU 

ReLU 

3x3 CONV 

+ 

x	

F(x)	

H(x)	=	F(x)	+	x	

Iden%ty	
x	

Learns  
Residual  

F(x)=H(x)-x 
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Revolution of Depth 

Image Source: http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf  
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Summary of Popular DNNs 
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet  

(v1) 
ResNet-50 

Top-5 error n/a 16.4 7.4 6.7 5.3 

Input Size 28x28 227x227 224x224 224x224 224x224 
# of CONV Layers  2 5 16 21 (depth) 49 
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1 1, 4 1 1, 2 1, 2 
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 
# of MACs 283k 666M 15.3G 1.43G 3.86G 
# of FC layers 2 3 3 1 1 
# of Weights 58k 58.6M 124M 1M 2M 
# of MACs 58k 58.6M 124M 1M 2M 
Total Weights 60k 61M 138M 7M 25.5M 
Total MACs 341k 724M 15.5G 1.43G 3.9G 

CONV Layers increasingly important! 
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Summary of Popular DNNs 
•  AlexNet 

–  First CNN Winner of ILSVRC 
–  Uses LRN (deprecated after this) 

•  VGG-16 
–  Goes Deeper (16+ layers) 
–  Uses only 3x3 filters (stack for larger filters) 

•  GoogLeNet (v1) 
–  Reduces weights with Inception and only one FC layer 
–  Inception: 1x1 and DAG (parallel connections) 
–  Batch Normalization 

•  ResNet 
–  Goes Deeper (24+ layers) 
–  Shortcut connections 
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Frameworks 

Also, CNTK, MXNet, etc. 
More at: https://developer.nvidia.com/deep-learning-frameworks  

Berkeley / BVLC 
(C, C++, Python, MATLAB) 

Google 
(C++, Python) 

U. Montreal 
(Python) 

Facebook / NYU 
(C, C++, Lua) 

* * 

* Lightweight mobile versions (Caffe2go, TensorFlow Mobile) 
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Example: Layers in Caffe 

http://caffe.berkeleyvision.org/tutorial/layers.html 

!

layer {!

  name: "relu1"!

  type: "ReLU"!

  bottom: "conv1"!

  top: "conv1"!

}!

!

layer {!

  name: "conv1"!

  type: "Convolution"!

  bottom: "data"!

  top: "conv1"!

 ...!

  convolution_param {!

    num_output: 20!

    kernel_size: 5!

    stride: 1!

...!

!

layer {!

  name: "pool1"!

  type: "Pooling"!

  bottom: "conv1"!

  top: "pool1"!

  pooling_param {!

    pool: MAX!

    kernel_size: 2!

    stride: 2 ...!

Pooling Layer 

Convolution Layer 

Non-Linearity 
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Benefits of Frameworks 

•  Rapid development 
•  Sharing models 
•  Workload profiling 
•  Network hardware co-design 
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Image Classification Datasets  

•  Image Classification/Recognition 
–  Given an entire image à Select 1 of N classes 
–  No localization (detection) 

 

Image Source: Stanford cs231n 

Datasets affect difficulty of task 
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MNIST 

LeNet in 1998 
(0.95% error) 
 
 
 
ICML 2013 
(0.21% error) 

http://yann.lecun.com/exdb/mnist/  

Digit Classification 
28x28 pixels (B&W) 
10 Classes 
60,000 Training 
10,000 Testing 
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ImageNet 

http://www.image-net.org/challenges/LSVRC/  

Object Classification 
~256x256 pixels (color) 
1000 Classes 
1.3M Training 
100,000 Testing (50,000 Validation) 

Image Source: http://karpathy.github.io/ 
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ImageNet 

http://www.image-net.org/challenges/LSVRC/  

Image Source: http://karpathy.github.io/ 

Fine grained  
Classes 
(120 breeds) 

Top-5 Error 
Image Source: Krizhevsky et al., NIPS 2012 

Winner 2012  
(16.42% error) 
 
 
 
Winner 2016 
(2.99% error) 



20 

Image Classification Summary 

MNIST IMAGENET 
Year 1998 2012 
Resolution 28x28 256x256 
Classes 10 1000 
Training 60k 1.3M 
Testing 10k 100k 
Accuracy 0.21% error  

(ICML 2013) 
2.99%  

top-5 error 
(2016 winner) 

http://rodrigob.github.io/are_we_there_yet/build/
classification_datasets_results.html 
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Next Tasks: Localization and Detection 

[Russakovsky et al., IJCV, 2015] 
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Others Popular Datasets 
•  Pascal VOC 

–  11k images 
–  Object Detection 
–  20 classes 

•  MS COCO   
–  300k images 
–  Detection, Segmentation 
–  Recognition in context 

http://mscoco.org/  http://host.robots.ox.ac.uk/pascal/VOC/  



23 

Recently Introduced Datasets 

•  Google Open Images (~9M images) 
–  https://github.com/openimages/dataset 

•  Youtube-8M (8M videos) 
–  https://research.google.com/youtube8m/  

•  AudioSet (2M sound clips) 
–  https://research.google.com/audioset/index.html  
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Summary 

•  Development resources presented in this 
section enable us to evaluate hardware using 
the appropriate DNN model and dataset 
–  Difficult tasks typically require larger models 
–  Different datasets for different tasks 
–  Number of datasets growing at a rapid pace 
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Survey of  
DNN Hardware 

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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CPUs Are Targeting Deep Learning 

Image Source: Intel, Data Source: Next Platform 

Knights Mill: next gen Xeon Phi “optimized for deep learning”  

•  7 TFLOPS FP32 

•  16GB MCDRAM– 400 GB/s 

•  245W TDP 

•  29 GFLOPS/W (FP32) 

•  14nm process 

Intel Knights Landing (2016) 

Intel announced the addition of new vector instructions for deep learning 
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016 
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GPUs Are Targeting Deep Learning 

•  10/20 TFLOPS FP32/FP16 

•  16GB HBM – 750 GB/s 

•  300W TDP 

•  33/67 GFLOPS/W (FP32/FP16) 

•  16nm process 

•  160GB/s NV Link  

Source: Nvidia 

Nvidia PASCAL GP100 (2016) 
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GPUs Are Targeting Deep Learning 

•  15 TFLOPS FP32 

•  16GB HBM2 – 900 GB/s 

•  300W TDP 

•  50 GFLOPS/W (FP32) 

•  12nm process 

•  300GB/s NV Link2  

•  Tensor Core…. 

Source: Nvidia 

Nvidia VOLTA GV100 (2017) 
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GV100 – “Tensor Core” 

Tensor Core…. 

•  120 TFLOPS (FP16) 

•  400 GFLOPS/W (FP16) 
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Systems for Deep Learning 

•  170 TFLOPS 

•  8× Tesla P100, Dual Xeon 

•  NVLink Hybrid Cube Mesh 

•  Optimized DL Software 

•  7 TB SSD Cache 

•  Dual 10GbE, Quad IB 100Gb 

•  3RU – 3200W 

Source: Nvidia 

Nvidia DGX-1 (2016) 
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Cloud Systems for Deep Learning 

•  Open Rack Compliant 

•  Powered by 8 Tesla M40 GPUs 

•  2x Faster Training for Faster Deployment 

•  2x Larger Networks for Higher Accuracy 
 

Source: Facebook 

Facebook’s Deep Learning Machine 
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SOCs for Deep Learning Inference 

ARM v8 
CPU 

COMPLEX 
(2x Denver 2 + 4x 

A57) 
Coherent HMP 

SECURITY 
ENGINES 

2D 
ENGINE 

4K60 
VIDEO 

ENCODER 

4K60 
VIDEO 

DECODER 

AUDIO 
ENGINE 

DISPLAY 
ENGINES 

IMAGE 
PROC 
(ISP) 

128-bit  
LPDDR4 

BOOT and 
PM PROC 

GigE 
Ethernet 

MAC 

I/O Safety 
Engine 

•  GPU: 1.5 TeraFLOPS FP16 

•  4GB LPDDR4 @ 25.6 GB/s 

•  15 W TDP  
(1W idle, <10W typical) 

•  100 GFLOPS/W (FP16) 

•  16nm process 

Source: Nvidia 

Nvidia Tegra - Parker 

Xavier: next gen Tegra to be an “AI supercomputer” 
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Mobile SOCs for Deep Learning 

•  GPU: 0.26 TFLOPS 

•  LPDDR4 @ 28.7 GB/s 

•  14nm process 

Exynos 8 Octa 8890 

Source: Wikipedia 

Samsung Exynos (ARM Mali) 
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FPGAs for Deep Learning 

•  10 TFLOPS FP32 
•  HBM2 integrated 
•  Up to 1 GHz 
•  14nm process 
•  80 GFLOPS/W 

Intel/Altera Stratix 10 

Xilinx Virtex UltraSCALE+ 
•  DSP: up to 21.2 TMACS 
•  DSP: up to 890 MHz 
•  Up to 500Mb On-Chip Memory 
•  16nm process 
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Kernel  
Computation 
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Fully-Connected (FC) Layer 

M 

CHW 

CHW 

1 

Filters Input fmaps 

× 

1 
Output fmaps 

M = 

•  Matrix–Vector Multiply:  
•  Multiply all inputs in all channels by a weight and sum 
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Fully-Connected (FC) Layer 

M 

CHW 

CHW 

N 

Filters Input fmaps 

× 

N 

Output fmaps 

M = 

•  Batching (N) turns operation into a Matrix-Matrix multiply 
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Fully-Connected (FC) Layer 

•  Implementation: Matrix Multiplication (GEMM) 
 

•  CPU: OpenBLAS, Intel MKL, etc 
•  GPU: cuBLAS, cuDNN, etc 

•  Optimized by tiling to storage hierarchy 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 
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Convolution (CONV) Layer 
•  Convert to matrix mult. using the Toeplitz Matrix 

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap 

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × = 

Toeplitz Matrix 
(w/ redundant data) 

Convolution: 

Matrix Mult: 

Data is repeated 
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Convolution (CONV) Layer 

•  Multiple Channels and Filters 

1 2
3 4Filter 1 

Input Fmap 

Chnl 1 * = 1 2
3 4

1 2
3 4Filter 2 

Chnl 1 Chnl 2 

1 2 3
4 5 6
7 8 9
Chnl 1 Chnl 2 

1 2
3 4

1 2
3 4

1 2 3
4 5 6
7 8 9

1 2
3 4 Chnl 2 

Output Fmap 
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Convolution (CONV) Layer 

= 1 2 3 4
1 2 3 4

1 2 3 4
1 2 3 4

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1
2
4
5

2
3
5
6

4
5
7
8

5
6
8
9

1 2
1 2 3 4

3 4× 

Toeplitz Matrix 
(w/ redundant data) 

•  Multiple Channels and Filters 

Chnl 1 Chnl 2 
Filter 1 
Filter 2 

Chnl 1 

Chnl 2 

Chnl 1 
Chnl 2 
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Computational  
Transforms 
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Computation Transformations 

•  Goal: Bitwise same result, but reduce 
number of operations 

•  Focuses mostly on compute 
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Gauss’s Multiplication Algorithm 

4 multiplications + 3 additions 

3 multiplications + 5 additions 
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Strassen 

P1 = a(f – h) 
P2 = (a + b)h 
P3 = (c + d)e 
P4 = d(g – e) 

P5 = (a + d)(e + h) 
P6 = (b - d)(g + h) 
P7 = (a – c)(e + f) 

8 multiplications + 4 additions 

7 multiplications + 18 additions 

7 multiplications + 13 additions (for constant B matrix – weights) 

[Cong et al., ICANN, 2014] 
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Strassen 

Comes at the price of reduced numerical stability 
and requires significantly more memory 

N 

Naïve 

Strassen 

Complexity 

Image Source: http://www.stoimen.com/blog/2012/11/26/computer-algorithms-strassens-matrix-multiplication/  

•  Reduce the complexity of matrix multiplication 
from Θ(N3) to Θ(N2.807) by reducing multiplication 
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Winograd 1D – F(2,3) 

[Lavin et al., ArXiv 2015] 

•  Targeting convolutions instead of matrix multiply 
•  Notation: F(size of output, filter size) 

6 multiplications + 4 additions 

=[█𝑦0@𝑦1 ] 

4 multiplications + 12 additions + 2 shifts 
4 multiplications + 8 additions (for constant weights) 

input filter 
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Winograd 2D - F(2x2, 3x3) 

•  1D Winograd is nested to make 2D Winograd 

d00 d01 d02 d03 

d10 d11 d12 d13 

d20 d21 d22 d23 

d30 d31 d32 d33 

Winograd:  16 multiplications à 2.25 times reduction 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Original:  36 multiplications 

Filter Input Fmap Output Fmap 

* = 
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Winograd Halos 
•  Winograd works on a small region of output at a 

time, and therefore uses inputs repeatedly 

d00 d01 d02 d03 d04 d05 

d10 d11 d12 d13 d14 d15 

d20 d21 d22 d23 d24 d25 

d30 d31 d32 d33 d34 d35 

g00 g01 g02 

g10 g11 g12 

g20 g21 g22 

y00 y01 

y10 y11 

Filter Input Fmap Output Fmap 

y02 y03 

y12 y12 

Halo columns 
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Winograd Performance Varies 

Source: Nvidia  
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Winograd Summary 

•  Winograd is an optimized computation for 
convolutions 
 

•  It can significantly reduce multiplies 
–  For example, for 3x3 filter by 2.25X 

 

•  But, each filter size is a different computation. 
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Winograd as a Transform 

Transform inputs 

Dot-product 

Transform output 

[Lavin et al., ArXiv 2015] 

filter 
input 

GgGT can be precomputed 
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R 

filter (weights) 

S 

FFT Flow  

E 

F 

input fmap output fmap 

H 

W 

an output  
activation 

* = 

FFT(W) 

F
F
T

FFT(I) X = FFT(0) 

F
F
T

I
F
F
T
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FFT Overview 

•  Convert filter and input to frequency domain 
to make convolution a simple multiply then 
convert back to time domain. 
 

•  Convert direct convolution O(No
2Nf

2) 
computation to O(No

2log2No) 

•  So note that computational benefit of FFT 
decreases with decreasing size of filter 

[Mathieu et al., ArXiv 2013, Vasilache et al., ArXiv 2014] 



32 

FFT Costs 

•  Input and Filter matrices are ‘0-completed’, 
–   i.e., expanded to size E+R-1 x F+S-1 

•  Frequency domain matrices are same 
dimensions as input, but complex.  

•  FFT often reduces computation, but requires 
much more memory space and bandwidth 
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Optimization opportunities 

•  FFT of real matrix is symmetric allowing one 
to save ½ the computes 

•  Filters can be pre-computed and stored, but 
convolutional filter in frequency domain is 
much larger than in time domain 

•  Can reuse frequency domain version of input 
for creating different output channels to 
avoid FFT re-computations 
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cuDNN: Speed up with Transformations 

Source: Nvidia  
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DNN Accelerator 
Architectures 

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Highly-Parallel Compute Paradigms 2 

Temporal Architecture 
(SIMD/SIMT) 

Spatial Architecture 
(Dataflow Processing) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 
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Memory Access is the Bottleneck 

  
  

  
  

ALU filter weight 
fmap activation 

partial sum updated partial sum 

Memory Read Memory Write MAC* 

* multiply-and-accumulate 



4 

Memory Access is the Bottleneck 

  
  

  
  

ALU 
  

  

Memory Read Memory Write MAC* 

* multiply-and-accumulate 

DRAM DRAM 

•  Example:  AlexNet [NIPS 2012]  has 724M MACs  
  à 2896M DRAM accesses required 

Worst Case: all memory R/W are DRAM accesses 
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Memory Access is the Bottleneck 

  
  

ALU 

Memory Read Memory Write MAC* 

Extra levels of local memory hierarchy 

  
  Mem DRAM DRAM Mem 
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Memory Access is the Bottleneck 

  
  

ALU 

Memory Read Memory Write 

Extra levels of local memory hierarchy 

  
  

1 

Opportunities:      data reuse         local accumulation 1 

Mem DRAM DRAM Mem 

MAC* 
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Types of Data Reuse in DNN 
Convolutional Reuse 

CONV layers only 
(sliding window) 

Filter Input Fmap 

    
  

Activations 
Filter weights 

Reuse: 
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Types of Data Reuse in DNN 
Convolutional Reuse Fmap Reuse 

CONV layers only 
(sliding window) 

CONV and FC layers 

Filter Input Fmap 

    
  

Filters 

2 

1   

  

Input Fmap 

  
  

Activations 
Filter weights 

Reuse: Activations Reuse: 
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Types of Data Reuse in DNN 
Filter Reuse Convolutional Reuse Fmap Reuse 

CONV layers only 
(sliding window) 

CONV and FC layers CONV and FC layers 
(batch size > 1) 

Filter Input Fmap 

    
  

Filters 

2 

1   

  

Input Fmap 

  
  

Filter 

  

2 

1 

Input Fmaps 

  

  

Activations 
Filter weights 

Reuse: Activations Reuse: Filter weights Reuse: 
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Memory Access is the Bottleneck 

  
  

ALU 

Memory Read Memory Write 

Extra levels of local memory hierarchy 

** AlexNet CONV layers 
1)  Can reduce DRAM reads of filter/fmap by up to 500×** 

  
  

1 

Opportunities:      data reuse         local accumulation 1 

Mem DRAM DRAM Mem 

1 

MAC* 
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Memory Access is the Bottleneck 

1)  Can reduce DRAM reads of filter/fmap by up to 500× 

2)  Partial sum accumulation does NOT have to access DRAM 
1 
2 

  
  

ALU 

Memory Read Memory Write 

Extra levels of local memory hierarchy 

  
  

2 

1 

Opportunities:      data reuse         local accumulation 1 2 

Mem DRAM DRAM Mem 

MAC* 
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Memory Access is the Bottleneck 

Opportunities:      data reuse         local accumulation 

•  Example:  DRAM access in AlexNet can be reduced 
  from 2896M to 61M (best case) 

1)  Can reduce DRAM reads of filter/fmap by up to 500× 

2)  Partial sum accumulation does NOT have to access DRAM 

1 2 

  
  

ALU 

Memory Read Memory Write 

Extra levels of local memory hierarchy 

  
  

2 

1 

Mem DRAM DRAM Mem 

1 
2 

MAC* 
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Spatial Architecture for DNN 

Processing 
Element (PE) 

Global Buffer (100 – 500 kB) 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

DRAM 

Local Memory Hierarchy 
•  Global Buffer 
•  Direct inter-PE network 
•  PE-local memory (RF) 

Control 

Reg File 0.5 – 1.0 kB 
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Low-Cost Local Data Access 

DRAM Global 
Buffer PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 
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Low-Cost Local Data Access 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

* measured from a commercial 65nm process 

How to exploit     data reuse and     local accumulation 
with limited low-cost local storage? 

1 2 

NoC: 200 – 1000 PEs 
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Low-Cost Local Data Access 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 
6× 

PE ALU 2× 
1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

* measured from a commercial 65nm process 

How to exploit     data reuse and     local accumulation 
with limited low-cost local storage? 

1 2 

NoC: 200 – 1000 PEs 

specialized processing dataflow required! 
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Dataflow Taxonomy 

•  Weight Stationary (WS) 

•  Output Stationary (OS) 

•  No Local Reuse (NLR) 

[Chen et al., ISCA 2016] 
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Weight Stationary (WS) 

•  Minimize weight read energy consumption 
−  maximize convolutional and filter reuse of weights 

•  Broadcast activations and accumulate psums 
spatially across the PE array. 

  

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 
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WS Example: nn-X (NeuFlow) 

[Farabet et al., ICCV 2009] 

A 3×3 2D Convolution Engine 

  

  

  

weights 

activations 

psums 
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•  Minimize partial sum R/W energy consumption 
−  maximize local accumulation 

•  Broadcast/Multicast filter weights and reuse 
activations spatially across the PE array   

Output Stationary (OS) 

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 
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OS Example: ShiDianNao 

Top-Level Architecture PE Architecture 

[Du et al., ISCA 2015] 

weights activations 

psums 
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•  Use a large global buffer as shared storage 
−  Reduce DRAM access energy consumption 

•  Multicast activations, single-cast weights, and 
accumulate psums spatially across the PE array 

  

No Local Reuse (NLR) 

Activation 
PE 

        

Psum 

Global Buffer 
Weight 
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NLR Example: UCLA 

[Zhang et al., FPGA 2015] 

weights activations 

psums 
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NLR Example: TPU 

weights 

activations 

psums 

[Jouppi et al., ISCA 2017] 

Top-Level Architecture Matrix Multiply Unit 
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Taxonomy: More Examples 

•  Weight Stationary (WS) 

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] 
[Park, ISSCC 2015] [ISAAC, ISCA 2016] [PRIME, ISCA 2016] 

[ShiDianNao, ISCA 2015] [Peemen, ICCD 2013] 
[Gupta, ICML 2015] [Moons, VLSI 2016] 

•  Output Stationary (OS) 

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] 
[Zhang, FPGA 2015] 

•  No Local Reuse (NLR) 

[TPU, ISCA 2017] 
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Energy Efficiency Comparison 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
. E

ne
rg

y/
O

p

Dataflows
NLR WS OSA OSB OSC 

Normalized  
Energy/MAC 

CNN Dataflows 

•  Same total area •  256 PEs 
•  AlexNet CONV layers •  Batch size = 16 

Variants of OS 

[Chen et al., ISCA 2016] 
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Energy Efficiency Comparison 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

N
or

m
. E

ne
rg

y/
O

p

Dataflows
NLR WS OSA OSB OSC Row 

Stationary 

Normalized  
Energy/MAC 

CNN Dataflows 

Variants of OS 

•  Same total area •  256 PEs 
•  AlexNet CONV layers •  Batch size = 16 

[Chen et al., ISCA 2016] 
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Energy-Efficient Dataflow: 
Row Stationary (RS) 

•  Maximize reuse and accumulation at RF 

•  Optimize for overall energy efficiency 
instead for only a certain data type 

[Chen et al., ISCA 2016] 
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Row Stationary: Energy-efficient Dataflow 29 

* = 
Filter Output Fmap 

Input Fmap 
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1D Row Convolution in PE 30 

* = 
Filter Partial Sums 
a b c a b c 

a b c d e 

PE Reg File 

  
  

  

b a c 

d c e a b 

Input Fmap 
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1D Row Convolution in PE 31 

* = 
Filter 
a b c a b c 

a b c d e 

e d 

PE 
b a c 

Reg File 

b a c 

a 

  
  

  

Partial Sums 
Input Fmap 
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1D Row Convolution in PE 32 

* = 
a b c 

a b c d e Partial Sums 
Input Fmap 

PE 
b a c 

Reg File 

c b d 

b 

  
  

  e 
a 

Filter 
a b c 
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1D Row Convolution in PE 33 

* = 
a b c 

a b c d e Partial Sums 
Input Fmap 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

Filter 
a b c 
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1D Row Convolution in PE 34 

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

•  Maximize row convolutional reuse in RF 
−  Keep a filter row and fmap sliding window in RF 

•  Maximize row psum accumulation in RF 
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2D Convolution in PE Array 35 

Row 1 Row 1 

= * 

* 
PE 1 
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2D Convolution in PE Array 36 

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 

= * 

* 

* 

* 

PE 1 

PE 2 

PE 3 
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2D Convolution in PE Array 37 

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 

= * 

Row 1 Row 2 

Row 2 Row 3 

Row 3 Row 4 

= * 

* * 

* * 

* * 

Row 2 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 
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2D Convolution in PE Array 38 

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 
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Convolutional Reuse Maximized 39 

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

Row 4 

Row 2 

Row 3 

Row 4 

Row 5 

Row 3 

* * * 

* * * 

* * * 

Filter rows are reused across PEs horizontally 

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

Row 1 

Row 2 

Row 3 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 
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Convolutional Reuse Maximized 40 

Row 1 

Row 2 

Row 3 

Row 1 

Row 1 

Row 2 

Row 3 

Row 2 

Row 1 

Row 2 

Row 3 

Row 3 

* * * 

* * * 

* * * 

Fmap rows are reused across PEs diagonally 

Row 1 

Row 2 

Row 3 

Row 2 

Row 3 

Row 4 

Row 3 

Row 4 

Row 5 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 
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Maximize 2D Accumulation in PE Array 41 

Row 1 Row 1 

Row 2 Row 2 

Row 3 Row 3 

Row 1 Row 2 

Row 2 Row 3 

Row 3 Row 4 

Row 1 Row 3 

Row 2 Row 4 

Row 3 Row 5 

* * * 

* * * 

* * * 

Partial sums accumulate across PEs vertically 

Row 1 Row 2 Row 3 

PE 1 

PE 2 

PE 3 

PE 4 

PE 5 

PE 6 

PE 7 

PE 8 

PE 9 



42 

Dimensions Beyond 2D Convolution 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 
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 Filter Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 2 

* Row 1 = 
Psum 2 Filter 1 
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 Filter Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 2 

* Row 1 = 
Psum 2 Filter 1 

share the same filter row 
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 Filter Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 2 

* Row 1 = 
Psum 2 Filter 1 

Processing in PE: concatenate fmap rows 

Channel 1 * Row 1 
Fmap 1 & 2 

= 
Psum 1 & 2 Filter 1 

Row 1 Row 1 Row 1 Row 1 

share the same filter row 



46 

Fmap Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 2 Filter 2 
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Fmap Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 2 Filter 2 

share the same fmap row 
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Fmap Reuse in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

R

R

C
H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 2 Filter 2 

share the same fmap row 

Processing in PE: interleave filter rows 

* 
Fmap 1 

= 
Psum 1 & 2 Filter 1 & 2 

Row 1 Channel 1 
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Channel Accumulation in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 2 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 
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Channel Accumulation in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 2 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

accumulate psums 

Row 1 Row 1 + = Row 1 
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Channel Accumulation in PE 
3 Multiple Channels 1 Multiple Fmaps 2 Multiple Filters 

R

R

C

H

C

H

Row 1 Row 1 Channel 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 2 Row 1 Row 1 
Fmap 1 

* Row 1 = 
Psum 1 Filter 1 

Channel 1 & 2 
Fmap 1 

= 
Psum Filter 1 

* Row 1 

Processing in PE: interleave channels 

accumulate psums 
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DNN Processing – The Full Picture 52 

Multiple fmaps: 

Multiple filters: 

Multiple channels: 
Image 1

=
PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap 

Fmap 

Fmap 

Map rows from multiple fmaps, filters and channels to same PE 
to exploit other forms of reuse and local accumulation 
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Optimal Mapping in Row Stationary 

…
M

……

R

R

R

R

C

C

E

E

H

H

C

E

E
1

N N

1

M

H

H

C

1

CNN Configurations 

Global Buffer

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Hardware Resources 

Optimization 
Compiler 
(Mapper) 

  

  

Row Stationary Mapping 

Multiple fmaps:

Multiple filters:

Multiple channels:

PE
Row 1 Row 1

PE
Row 2 Row 2

PE
Row 3 Row 3

PE
Row 1 Row 2

PE
Row 2 Row 3

PE
Row 3 Row 4

PE
Row 1 Row 3

PE
Row 2 Row 4

PE
Row 3 Row 5

* * *

* * *

* * *

Image 1
=

PsumFilter 1

*
*

Image 1
=

Psum 1 & 2Filter 1 & 2
*

Image 1 & 2
=

Psum 1 & 2Filter 1

Fmap

Fmap

Fmap

[Chen et al., ISCA 2016] 
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Computer Architecture Analogy 

Compilation Execution 
DNN Shape and Size 

(Program) 

Mapping Input 
Data 

Processed 
Data 

Mapper 
(Compiler) 

DNN Accelerator 
(Processor)     

      

  

Dataflow, … 
(Architecture) 

(Binary) 

Implementation  
Details 
(µArch) 

[Chen et al., Micro Top-Picks 2017] 
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Dataflow 
Simulation Results 
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Evaluate	Reuse	in	Different	Dataflows	
•  Weight	Sta7onary	

– Minimize	movement	of	filter	weights	

•  Output	Sta7onary	
– Minimize	movement	of	par5al	sums	

•  No	Local	Reuse	
–  No	PE	local	storage.	Maximize	global	buffer	size.	

•  Row	Sta7onary	
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Evaluation Setup 
•  same total area 
•  256 PEs 
•  AlexNet 
•  batch size = 16 

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU
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Variants of Output Stationary 

# Output Channels 

# Output Activations 

E 

E 

M 

OSB 

Multiple 

Multiple 

Notes 

E 

E 

M 

OSA 

Single 

Multiple 

Targeting 
CONV layers 

E 

E 

M 

OSC 

Multiple 

Single 

Targeting 
FC layers 

Parallel  
Output Region 
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Dataflow Comparison: CONV Layers 

Normalized 
Energy/MAC 

RS optimizes for the best overall energy efficiency 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 

CNN Dataflows 

psums 

weights 

activations 

[Chen et al., ISCA 2016] 
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Dataflow Comparison: CONV Layers 

RS uses 1.4× – 2.5× lower energy than other dataflows 

Normalized 
Energy/MAC 

ALU 

RF 

NoC 

buffer 

DRAM 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 

CNN Dataflows 

[Chen et al., ISCA 2016] 
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Dataflow Comparison: FC Layers 

0

0.5

1

1.5

2

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 

CNN Dataflows 

RS uses at least 1.3× lower energy than other dataflows 

psums 

weights 

activations 

[Chen et al., ISCA 2016] 
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Row Stationary: Layer Breakdown 

ALU 

RF 

NoC 

buffer 

DRAM 

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7 

Normalized 
Energy 

(1 MAC = 1) 

CONV Layers FC Layers 

[Chen et al., ISCA 2016] 
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Row Stationary: Layer Breakdown 

ALU 

RF 

NoC 

buffer 

DRAM 

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7 

Normalized 
Energy 

(1 MAC = 1) 

CONV Layers FC Layers 

RF dominates 
[Chen et al., ISCA 2016] 
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Row Stationary: Layer Breakdown 

ALU 

RF 

NoC 

buffer 

DRAM 

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7 

Normalized 
Energy 

(1 MAC = 1) 

CONV Layers FC Layers 

RF dominates DRAM dominates 
[Chen et al., ISCA 2016] 
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Row Stationary: Layer Breakdown 

ALU 

RF 

NoC 

buffer 

DRAM 

2.0e10	

1.5e10	

1.0e10	

0.5e10	

0	
L1 L8 L2 L3 L4 L5 L6 L7 

Normalized 
Energy 

(1 MAC = 1) 

CONV Layers FC Layers 

CONV layers dominate energy consumption! 

Total Energy 
80% 20% 
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Hardware Architecture 
for RS Dataflow 

[Chen et al., ISSCC 2016] 
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Eyeriss DNN Accelerator 66 

Off-Chip DRAM 

… 

… 

… 

… 
…

 

…
 

Decomp 

Comp ReLU 

Input Fmap 

Output Fmap 

Filter Filt 

Fmap 

Psum 

Psum 

Global 
Buffer 
SRAM 

 
108KB 

64 bits 

DNN Accelerator 

14×12 PE Array 

  
  

Link Clock  Core Clock  

[Chen et al., ISSCC 2016] 
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Data Delivery with On-Chip Network 

Off-Chip DRAM 

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter 

Buffer 
SRAM 

 
108KB 

64 bits 

DCNN Accelerator 

  
  

Link Clock  Core Clock  

… 

… 

… 

… 
…

 

…
 

Filt 

Fmap 

Psum 

Psum 

14×12 PE Array 

Filter  
Delivery 

Fmap 
Delivery 

Data Delivery Patterns 

How to accommodate different shapes with fixed PE array? 
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Logical to Physical Mappings 

Replication Folding 

.. 

.. .. .. 

.. 

.. 
3 

13 
AlexNet 
Layer 3-5 

12 

14 

Physical PE Array 

3 

3 

3 

3 

13 

13 

13 

13 

.. 
.. .. .. 

.. 

.. 
5 

27 
AlexNet 
Layer 2 

Physical PE Array 

12 

14 

5 
14 

13 5 
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Logical to Physical Mappings 

Replication Folding 

.. 

.. .. .. 

.. 

.. 
3 

13 
AlexNet 
Layer 3-5 

12 

14 

Physical PE Array 

3 

3 

3 

3 

13 

13 

13 

13 

.. 
.. .. .. 

.. 

.. 
5 

27 
AlexNet 
Layer 2 

Physical PE Array 

12 

14 

5 
14 

13 5 

Unused PEs 
are 

Clock Gated 
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Data Delivery with On-Chip Network 

Off-Chip DRAM 

Decomp 

Comp ReLU 

Input Image 

Output Image 

Filter 

Buffer 
SRAM 

 
108KB 

64 bits 

DCNN Accelerator 

  
  

Link Clock  Core Clock  

… 

… 

… 

… 
…

 

…
 

Filt 

Img 

Psum 

Psum 

14×12 PE Array 

Filter  
Delivery 

Image 
Delivery 

Data Delivery Patterns 

Compared to Broadcast, Multicast saves >80% of NoC energy 
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Chip Spec & Measurement Results 

Technology TSMC 65nm LP 1P9M 
On-Chip Buffer 108 KB 

# of PEs 168 
Scratch Pad / PE 0.5 KB 
Core Frequency 100 – 250 MHz 

Peak Performance 33.6 – 84.0 GOPS 
Word Bit-width 16-bit Fixed-Point 

Natively Supported 
DNN Shapes 

Filter Width: 1 – 32 
Filter Height: 1 – 12 
Num. Filters: 1 – 1024 
Num. Channels: 1 – 1024 
Horz. Stride: 1–12 
Vert. Stride: 1, 2, 4 

4000 µm 

4000 µm
 

Global 
Buffer 

Spatial Array 
(168 PEs) 

[Chen et al., ISSCC 2016] 

To	support	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			
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Summary of DNN Dataflows 
•  Weight Stationary 

–  Minimize movement of filter weights 
–  Popular with processing-in-memory architectures 

•  Output Stationary 
–  Minimize movement of partial sums 
–  Different variants optimized for CONV or FC layers 

•  No Local Reuse 
–  No PE local storage à maximize global buffer size 

 
•  Row Stationary 

–  Adapt to the NN shape and hardware constraints 
–  Optimized for overall system energy efficiency 
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Fused Layer 
•  Dataflow across multiple layers 

[Alwani et al., MICRO 2016] 
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Advanced Technology 
Opportunities 

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Advanced Storage Technology 

•  Embedded DRAM (eDRAM) 
–  Increase on-chip storage capacity 

•  3D Stacked DRAM  
–  e.g. Hybrid Memory Cube Memory (HMC), High 

Bandwidth Memory (HBM) 
–  Increase memory bandwidth  
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eDRAM (DaDianNao) 

•  Advantages of eDRAM 
–  2.85x higher density than SRAM 
–  321x more energy-efficient than DRAM (DDR3) 

•  Store weights in eDRAM (36MB) 
–  Target fully connected layers since dominated by weights 
 

[Chen et al., DaDianNao, MICRO 2014] 

16 Parallel 
Tiles 
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Stacked DRAM (NeuroCube) 
•  NeuroCube on Hyper Memory Cube Logic Die  

–  6.25x higher BW than DDR3 
•  HMC (16 ch x 10GB/s) > DDR3 BW (2 ch x 12.8GB/s) 

–  Computation closer to memory (reduce energy) 
 

[Kim et al., NeuroCube, ISCA 2016] 
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Stacked DRAM (TETRIS) 

[Gao et al., Tetris, ASPLOS 2017] 

Eyeriss 
design 

•  Explores the use of HMC with the Eyeriss spatial 
architecture and row stationary dataflow 

•  Allocates more area to the computation (PE array) than 
on-chip memory (global buffer) to exploit the low energy 
and high throughput properties of the HMC 
–  1.5x energy reduction, 4.1x higher throughput vs. 2-D DRAM 
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Analog Computation 

V1 
G1 

I1 = V1×G1 
V2 

G2 

I2 = V2×G2 

I = I1 + I2  
= V1×G1 + V2×G2 

Figure Source:  ISAAC, ISCA 2016 

•  Conductance = Weight 
•  Voltage = Input 
•  Current = Voltage × Conductance  
•  Sum currents for addition 

Input = V1, V2, … 

Filter Weights = G1, G2, … (conductance) 

Weight Stationary Dataflow 

Output = Weight × Input∑
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Memristor Computation 

•  Advantages 
–  High Density (< 10nm x 10nm size*) 

•  ~30x smaller than SRAM** 
•  1.5x smaller than DRAM** 

–  Non-Volatile 
–  Operates at low voltage 
–  Computation within memory (in situ) 

•  Reduce data movement 

Use memristors as programmable 
weights (resistance) 

*[Govoreanu et al., IEDM 2011], **ITRS 2013 
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Memristor 

[Chi et al., ISCA 2016] 
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Challenges with Memristors 

•  Limited Precision  
•  A/D and D/A Conversion 
•  Array Size and Routing 

–  Wire dominates energy for array size of 1k × 1k 
–  IR drop along wire can degrade read accuracy 

•  Write/programming energy 
–  Multiple pulses can be costly 

•  Variations & Yield 
–  Device-to-device, cycle-to-cycle 
–  Non-linear conductance across range  

[Eryilmaz et al., ISQED 2016] 
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ISAAC 

[Shafiee et al., ISCA 2016] 

V1 
G1 I1 = V1.G1 

V2 
G2 

I2 = V2.G2 

I = I1 + I2 =V1.G1 + V2.G2 

S&H S&H S&H S&H S&H S&H S&H S&H 

ADC 

Shift & ADD 

•  eDRAM using memristors  
•  16-bit dot-product operation 

–  8 x 2-bits per memristors 
–  1-bit per cycle computation 
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ISAAC 

[Shafiee et al., ISCA 2016] 

Eight 128x128 
arrays per IMA 

 
12 IMAs per Tile 
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PRIME 

[Chi et al., ISCA 2016] 

•  Bit precision for each 256x256 ReRAM array 
–  3-bit input, 4-bit weight (2x for 6-bit input and 8-bit weight) 
–  Dynamic fixed point (6-bit output) 

•  Reconfigurable to be main memory or accelerator 
–  4-bit MLC computation; 1-bit SLC for storage 
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Fabricated Memristor Crossbar 
•  Transistor-free metal-oxide 

12x12 crossbar 
–  A single-layer perceptron 

(linear classification)  
–  3x3 binary image 
–  10 inputs x 3 outputs x 2 

differential weights = 60 
memristors 

[Prezioso et al., Nature 2015] 
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Optical Neural Network 

[Shen et al., Nature Photonics 2017] 

Matrix Multiplication in the Optical Domain 

The photodetection rate is 100 GHz 
 

“In principle, such a system can be at least 
two orders of magnitude faster than 
electronic neural networks (which are 

restricted to a GHz clock rate)” 
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DNN Model and  
Hardware Co-Design  

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang 
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Approaches 

•  Reduce size of operands for storage/compute 
–  Floating point à Fixed point 
–  Bit-width reduction 
–  Non-linear quantization 

 
•  Reduce number of operations for storage/compute 

–  Exploit Activation Statistics (Compression) 
–  Network Pruning 
–  Compact Network Architectures 



3 

Cost of Operations 
Operation: Energy 

(pJ) 
8b Add 0.03 
16b Add 0.05 
32b Add 0.1 
16b FP Add 0.4 
32b FP Add 0.9 
8b Mult 0.2 
32b Mult 3.1 
16b FP Mult 1.1 
32b FP Mult 3.7 
32b SRAM Read (8KB) 5 
32b DRAM Read 640 

Area 
(µm2) 

36 
67 

137 
1360 
4184 
282 

3495 
1640 
7700 
N/A 
N/A 

[Horowitz, “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014]  

Relative Energy Cost 

1 10 102 103 104 

Relative Area Cost 

1 10 102 103 
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Number Representation 

FP32 
 
 
FP16 
 
 
Int32 
 
 
Int16 
 
 
Int8 

S E M 
1 8 23 

S E M 
1 5 10 

M 
31 

S 

S M 

1 

1 15 

S M 
1 7 

Range Accuracy 

10-38 – 1038  .000006% 

6x10-5 - 6x104  .05% 

0 – 2x109 ½ 

0 – 6x104 ½ 

0 – 127 ½ 

Image Source: B. Dally 
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Floating Point à Fixed Point 

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float 

exponent (8-bits) mantissa (23-bits) sign 

8-bit  
fixed 

0 1 1 0 0 1 1 0 

sign 

integer  
(4-bits) 

mantissa (7-bits) 

fractional 
(3-bits) 

e = 70 s = 1 m = 20482 -1.42122425 x 10-13 

s = 0 12.75 m=102 

Floating Point 

Fixed Point 
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N-bit Precision 

Accumulate + 

Weight  
(N-bits) 

Activation  
(N-bits) 

N x N 
multiply 

2N-bits 

2N+M-bits 

Output 
(N-bits) 

Quantize 
to N-bits 

For no loss in precision, M is determined based on largest 
filter size (in the range of 10 to 16 bits for popular DNNs) 
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Dynamic Fixed Point 

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 32-bit float 

exponent (8-bits) mantissa (23-bits) sign 

8-bit  
dynamic  

fixed 

0 1 1 0 0 1 1 0 

sign 

integer  
([7-f ]-bits) 

mantissa (7-bits) 

fractional 
(f-bits) 

e = 70 s = 1 m = 20482 -1.42122425 x 10-13 

f = 3 s = 0 12.75 m=102 

8-bit  
dynamic  

fixed 

0 1 1 0 0 1 1 0 

sign mantissa (7-bits) 

fractional 
(f-bits) 

f = 9 s = 0 0.19921875 m=102 

Allow f to vary based on data type and layer 

Floating Point 

Fixed Point 
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Impact on Accuracy 

[Gysel et al., Ristretto, ICLR 2016] 

w/o fine tuning 

Top-1 accuracy 
on of CaffeNet 
on ImageNet 
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Avoiding Dynamic Fixed Point 

AlexNet 
(Layer 6) 

Image Source: Moons 
et al, WACV 2016 

Batch normalization ‘centers’ dynamic range 

‘Centered’ dynamic ranges might reduce need for 
dynamic fixed point 
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Nvidia PASCAL 

“New half-precision, 16-bit 
floating point instructions 
deliver over 21 TeraFLOPS for 
unprecedented training 
performance. With 47 TOPS 
(tera-operations per second) 
of performance, new 8-bit 
integer instructions in Pascal 
allow AI algorithms to deliver 
real-time responsiveness for 
deep learning inference.”  
 
– Nvidia.com (April 2016) 
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Google’s Tensor Processing Unit (TPU) 

“ With its TPU Google has 
seemingly focused on delivering 
the data really quickly by cutting 
down on precision. Specifically, 
it doesn’t rely on floating point 
precision like a GPU  
…. 
Instead the chip uses integer 
math…TPU used 8-bit integer.” 
 
- Next Platform (May 19, 2016) 

[Jouppi et al., ISCA 2017] 
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Precision Varies from Layer to Layer 

[Moons et al., WACV 2016] [Judd et al., ArXiv 2016] 
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Bitwidth Scaling (Speed) 
Bit-Serial Processing: Reduce Bit-width à Skip Cycles 

Speed up of 2.24x vs. 16-bit fixed 

[Judd et al., Stripes, CAL 2016] 
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Bitwidth Scaling (Power) 

[Moons et al., VLSI 2016] 

Reduce Bit-width à 
Shorter Critical Path 
à Reduce Voltage 

Power reduction of 
2.56x vs. 16-bit fixed 
On AlexNet Layer 2 
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Binary Nets 

•  Binary Connect (BC) 
–  Weights {-1,1}, Activations 32-bit float 

–  MAC à addition/subtraction 

–  Accuracy loss: 19% on AlexNet 

 

•  Binarized Neural Networks (BNN) 
–  Weights {-1,1}, Activations {-1,1} 

–  MAC à XNOR 

–  Accuracy loss: 29.8% on AlexNet 

 

Binary Filters 

[Courbariaux, arXiv 2016] 

[Courbariaux, NIPS 2015] 
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Scale the Weights and Activations  

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 

•  Binary Weight Nets (BWN) 
–  Weights {-α, α} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 
–  α determined by the l1-norm of all weights in a layer 
–  Accuracy loss: 0.8% on AlexNet 

•  XNOR-Net 
–  Weights {-α, α} 
–  Activations {-βi, βi} à except first and last layers are 32-bit float 
–  βi determined by the l1-norm of all activations across channels 

for given position i of the input feature map  
–  Accuracy loss: 11% on AlexNet 
 
 

 

Hardware needs to support 
both activation precisions 

Scale factors (α, βi) can change per layer or position in filter 
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XNOR-Net 

[Rastegari et al., BWN & XNOR-Net, ECCV 2016] 
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Ternary Nets 

•  Allow for weights to be zero 
–  Increase sparsity, but also increase number of bits (2-bits) 

 

•  Ternary Weight Nets (TWN) 
–  Weights {-w, 0, w} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 

–  Accuracy loss: 3.7% on AlexNet 

•  Trained Ternary Quantization (TTQ) 
–  Weights {-w1, 0, w2} à except first and last layers are 32-bit float 
–  Activations: 32-bit float 

–  Accuracy loss: 0.6% on AlexNet 

[Li et al., arXiv 2016] 

[Zhu et al., ICLR 2017] 
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Non-Linear Quantization 

•  Precision refers to the number of levels  
–  Number of bits = log2 (number of levels) 

•  Quantization: mapping data to a smaller set of levels 
–  Linear, e.g., fixed-point 
–  Non-linear 

•  Computed 
•  Table lookup 

Objective: Reduce size to improve speed and/or reduce energy 
while preserving accuracy 
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Computed Non-linear Quantization  
 

Log Domain Quantization 

Product = X << W Product =  X * W 

[Lee et al., LogNet, ICASSP 2017] 
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Log Domain Computation 

Only activation 
in log domain 

Both weights 
and activations 
in log domain 

[Miyashita et al., arXiv 2016] 

max, bitshifts, adds/subs 
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Log Domain Quantization 
•  Weights: 5-bits for CONV, 4-bit for FC; Activations: 4-bits 
•  Accuracy loss: 3.2% on AlexNet 

 

[Miyashita et al., arXiv 2016], 
[Lee et al., LogNet, ICASSP 2017] 

Shift and Add 

WS 
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Reduce Precision Overview 

•  Learned mapping of data to quantization levels   
(e.g., k-means) 

•  Additional Properties 
–  Fixed or Variable (across data types, layers, channels, etc.) 

[Han et al., ICLR 2016] 

Implement with 
look up table 
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Non-Linear Quantization Table Lookup 
Trained Quantization: Find K weights via K-means clustering 

 to reduce number of unique weights per layer (weight sharing) 

[Han et al., Deep Compression, ICLR 2016] 

Weight 
Decoder/
Dequant 
U x 16b 

Weight  
index 

(log2U-bits) 
Weight  

(16-bits) 
Weight  
Memory 
CRSM x 

log2U-bits 
Output 

Activation 
(16-bits) 

  
  

  
  

MAC 

Input 
Activation  
(16-bits) 

Example: AlexNet (no accuracy loss) 
256 unique weights for CONV layer 

16 unique weights for FC layer 

Does not reduce 
precision of MAC 

Overhead 
Smaller Weight 

Memory 

Consequences: Narrow weight memory and second access from (small) table 
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Summary of Reduce Precision 
Category Method Weights  

(# of bits) 
Activations 
(# of bits) 

Accuracy Loss vs. 
32-bit float (%) 

Dynamic Fixed 
Point 

w/o fine-tuning 8 10 0.4 
w/ fine-tuning 8 8 0.6 

Reduce weight Ternary weights 
Networks (TWN) 

2* 32 3.7 

Trained Ternary 
Quantization (TTQ) 

2* 32 0.6 

Binary Connect (BC) 1 32 19.2 
Binary Weight Net 
(BWN) 

1* 32 0.8 

Reduce weight 
and activation 

Binarized Neural Net 
(BNN) 

1 1 29.8 

XNOR-Net 1* 1 11 
Non-Linear LogNet 5(conv), 4(fc) 4 3.2 

Weight Sharing 8(conv), 4(fc) 16 0 

* first and last layers are 32-bit float 

Full list @ [Sze et al., arXiv, 2017] 
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Reduce Number of Ops and Weights 

•  Exploit Activation Statistics 
•  Network Pruning 
•  Compact Network Architectures 
•  Knowledge Distillation 
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Sparsity in Fmaps 

9 -1 -3 
1 -5 5 
-2 6 -1 

Many zeros in output fmaps after ReLU 
ReLU 9 0 0 

1 0 5 
0 6 0 

0 

0.2 

0.4 

0.6 

0.8 

1 

1 2 3 4 5 
CONV Layer 

# of activations # of non-zero activations 

(Normalized) 
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… 

… 

… 

… 
…

 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  
  

Link Clock  Core Clock  

I/O Compression in Eyeriss 

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

[Chen et al., ISSCC 2016] 

DCNN Accelerator 
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Compression Reduces DRAM BW 

0	

1	

2	
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AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5 
AlexNet Conv Layer 

DRAM  
Access  

(MB)  

0 

2 

4 

6 
1.2× 

1.4× 
1.7× 

1.8× 
1.9× 

Uncompressed 
Fmaps + Weights 

RLE Compressed 
Fmaps + Weights 

[Chen et al., ISSCC 2016] 

Simple RLC within 5% - 10% of theoretical entropy limit 
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Data	Ga&ng	/	Zero	Skipping	in	Eyeriss	

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   
  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

[Chen et al., ISSCC 2016] 
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Cnvlutin 
•  Process Convolution Layers 
•  Built on top of DaDianNao (4.49% area overhead) 
•  Speed up of 1.37x (1.52x with activation pruning) 

[Albericio et al., ISCA 2016] 
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Pruning Activations 

[Reagen et al., ISCA 2016] 

Remove small activation values 

[Albericio et al., ISCA 2016] 

Speed up 11% (ImageNet) Reduce power 2x (MNIST) 

Minerva 
Cnvlutin 
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Pruning – Make Weights Sparse 

•  Optimal Brain Damage 
1.  Choose a reasonable network 

architecture 
2.  Train network until reasonable 

solution obtained 
3.  Compute the second derivative 

for each weight 
4.  Compute saliencies (i.e. impact 

on training error) for each weight 
5.  Sort weights by saliency and 

delete low-saliency weights 
6.  Iterate to step 2 

[Lecun et al., NIPS 1989] 

retraining 
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Pruning – Make Weights Sparse 

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune based on magnitude of weights 

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Example: AlexNet 
Weight Reduction: CONV layers 2.7x, FC layers 9.9x 
(Most reduction on fully connected layers) 
Overall: 9x weight reduction, 3x MAC reduction 

[Han et al., NIPS 2015] 
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Speed up of Weight Pruning on CPU/GPU 

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV 
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV 
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV 
 
Batch size = 1 

On Fully Connected Layers Only 
Average Speed up of 3.2x on GPU, 3x on CPU, 5x on mGPU 

[Han et al., NIPS 2015] 
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Key Metrics for Embedded DNN 

•  Accuracy à Measured on Dataset 
•  Speed à Number of MACs 
•  Storage Footprint à Number of Weights 
•  Energy à ? 
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Energy-Aware Pruning 

•  # of Weights alone is not a good metric for 
energy  
–  Example (AlexNet): 

•  # of Weights (FC Layer) > # of Weights (CONV layer)  
•  Energy (FC Layer) < Energy (CONV layer) 

•  Use energy evaluation method to estimate DNN 
energy 
–  Account for data movement 
 

[Yang et al., CVPR 2017] 
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Energy-Evaluation Methodology 

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Evaluation tool available at http://eyeriss.mit.edu/energy.html  
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Key Observations 

•  Number of weights alone is not a good metric for energy 
•  All data types should be considered  

 

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa&on	
10%	

Energy	Consump&on	
of	GoogLeNet	

[Yang et al., CVPR 2017] 
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Energy Consumption of Existing DNNs 

Deeper CNNs with fewer weights do not necessarily consume less 
energy than shallower CNNs with more weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	
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To
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Normalized	Energy	Consump&on	

Original	DNN	



41 

Magnitude-based Weight Pruning 

Reduce number of weights by removing small magnitude weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	
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Energy-Aware Pruning 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump&on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

1.74x 

Remove weights from layers in order of highest to lowest energy 
3.7x reduction in AlexNet / 1.6x reduction in GoogLeNet 

DNN Models available at http://eyeriss.mit.edu/energy.html  
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Energy Estimation Tool 
Website: https://energyestimation.mit.edu/  

Input DNN Configuration File 

Output DNN energy breakdown across layers 

[Yang et al., CVPR 2017] 
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Compression of Weights & Activations 
•  Compress weights and activations between DRAM  

and accelerator 
•  Variable Length / Huffman Coding 

•  Tested on AlexNet à 2× overall BW Reduction 

[Moons et al., VLSI 2016; Han et al., ICLR 2016] 

Value: 16’b0  à Compressed Code: {1’b0} 

Value: 16’bx  à Compressed Code: {1’b1, 16’bx} 

Example: 
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Sparse Matrix-Vector DSP 
•  Use CSC rather than CSR for SpMxV 

[Dorrance et al., FPGA 2014] 

Compressed Sparse Column (CSC)  Compressed Sparse Row (CSR)  

Reduce memory bandwidth (when not M >> N) 
For DNN, M = # of filters, N = # of weights per filter 

M 

N 
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•  Process Fully Connected Layers (after Deep Compression) 
•  Store weights column-wise in Run Length format 
•  Read relative column when input is non-zero 

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0
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0 0 0 0
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0 w7,1 0 0

1
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�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@
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0

b3
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b5
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0

1

CCCCCCCCCCCCCA

1

[Han et al., ISCA 2016] 

Input 

 
 
Weights 
 
 

Output 

EIE: A Sparse Linear Algebra Engine 

Dequantize Weight 

Keep track of location 

Output Stationary Dataflow  

Supports Fully Connected Layers Only 
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Sparse CNN (SCNN) 

[Parashar et al., ISCA 2017] 
Input Stationary Dataflow  

Supports Convolutional Layers 

= 

x

a

b

d

e

f 

c
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z

xa * 

ya * 
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xb * 

yb * 

zb * 

…
 

Scatter 

network 

Accumulate MULs 

PE frontend PE backend 

Densely Packed 

Storage of Weights 

and Activations 

All-to all 

Multiplication of 

Weights and Activations 

Mechanism to Add to 

Scattered Partial Sums  
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Structured/Coarse-Grained Pruning  
•  Scalpel 

–  Prune to match the underlying data-parallel hardware 
organization for speed up 

  

[Yu et al., ISCA 2017] 

Dense weights Sparse weights 

Example: 2-way SIMD 
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Compact Network Architectures 

•  Break large convolutional layers into a series 
of smaller convolutional layers 
–  Fewer weights, but same effective receptive field 
 

•  Before Training: Network Architecture Design 
 
•  After Training: Decompose Trained Filters 
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Network Architecture Design 

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 
GoogleNet/Inception v3 

VGG-16 

Build Network with series of Small Filters 

separable  
filters 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

Reduce size and computation with 1x1 Filter (bottleneck) 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 

Reduce size and computation with 1x1 Filter (bottleneck) 
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Network Architecture Design 

Figure Source: 
Stanford cs231n 

[Szegedy et al., ArXiV 2014 / CVPR 2015] 

Used in Network In Network(NiN) and GoogLeNet 
[Lin et al., ArXiV 2013 / ICLR 2014] 

Reduce size and computation with 1x1 Filter (bottleneck) 
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Bottleneck in Popular DNN models 

ResNet 

GoogleNet 

compress 

expand 

compress 
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SqueezeNet 

[F.N. Iandola et al., ArXiv, 2016]] 

Fire Module 

Reduce weights by reducing number of input 
channels by “squeezing” with 1x1 
50x fewer weights than AlexNet 

(no accuracy loss) 
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Energy Consumption of Existing DNNs 

Deeper CNNs with fewer weights do not necessarily consume less 
energy than shallower CNNs with more weights 

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	
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Decompose Trained Filters 
After training, perform low-rank approximation by applying tensor 
decomposition to weight kernel; then fine-tune weights for accuracy 

[Lebedev et al., ICLR 2015] R = canonical rank 
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Decompose Trained Filters 

[Denton et al., NIPS 2014] 

•  Speed up by 1.6 – 2.7x on CPU/GPU for CONV1, 
CONV2 layers 

•  Reduce size by 5 - 13x for FC layer  
•  < 1% drop in accuracy 

Original Approx. 
Visualization of Filters 
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Decompose Trained Filters on Phone 

[Kim et al., ICLR 2016] 

Tucker Decomposition 
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Knowledge Distillation 

[Bucilu et al., KDD 2006],[Hinton et al., arXiv 2015]  

&RPSOH[ 
DNN B 
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Benchmarking Metrics  
for DNN Hardware 

ISCA Tutorial (2017) 

Website: http://eyeriss.mit.edu/tutorial.html  

Joel Emer, Vivienne Sze, Yu-Hsin Chen 
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Metrics Overview 
•  How can we compare designs? 
•  Target Metrics 

–  Accuracy 
–  Power 
–  Throughput 
–  Cost  

•  Additional Factors 
–  External memory bandwidth  
–  Required on-chip storage 
–  Utilization of cores 
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Download Benchmarking Data 

•  Input (http://image-net.org/)  
–  Sample subset from ImageNet Validation Dataset 

 

•  Widely accepted state-of-the-art DNNs  
(Model Zoo: http://caffe.berkeleyvision.org/) 
–  AlexNet 
–  VGG-16 
–  GoogleNet-v1 
–  ResNet-50 



4 

Metrics for DNN Algorithm 

•  Accuracy 
•  Network Architecture  

–  # Layers, filter size, # of filters, # of channels 

•  # of Weights (storage capacity) 
–  Number of non-zero (NZ) weights  

•  # of MACs (operations) 
–  Number of non-zero (NZ) MACS 
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Metrics of DNN Algorithms 
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50 
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02 
Input 227x227 224x224 224x224 224x224 
# of CONV Layers 5 16 21 49 
Filter Sizes 3, 5,11 3 1, 3 , 5, 7 1, 3, 7 
# of Channels 3 - 256 3 - 512 3 - 1024 3 - 2048 
# of Filters 96 - 384 64 - 512 64 - 384 64 - 2048 
Stride 1, 4 1 1, 2 1, 2 
# of Weights 2.3M 14.7M 6.0M 23.5M 
# of MACs 666M 15.3G 1.43G 3.86G 
# of FC layers 3 3 1 1 
# of Weights 58.6M 124M 1M 2M 
# of MACs 58.6M 124M 1M 2M 
Total Weights 61M 138M 7M 25.5M 
Total MACs 724M 15.5G 1.43G 3.9G 

*Single crop results: https://github.com/jcjohnson/cnn-benchmarks  
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Metrics of DNN Algorithms 
Metrics AlexNet VGG-16 GoogLeNet (v1) ResNet-50 
Accuracy (top-5 error)* 19.8 8.80 10.7 7.02 
# of CONV Layers 5 16 21 49 
# of Weights 2.3M 14.7M 6.0M 23.5M 
# of MACs 666M 15.3G 1.43G 3.86G 
# of NZ MACs** 394M 7.3G 806M 1.5G 
# of FC layers 3 3 1 1 
# of Weights 58.6M 124M 1M 2M 
# of MACs 58.6M 124M 1M 2M 
# of NZ MACs** 14.4M 17.7M 639k 1.8M 
Total Weights 61M 138M 7M 25.5M 
Total MACs 724M 15.5G 1.43G 3.9G 
# of NZ MACs** 409M 7.3G 806M 1.5G 

**# of NZ MACs computed based on 50,000 validation images 
*Single crop results: https://github.com/jcjohnson/cnn-benchmarks  
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Metrics of DNN Algorithms 
Metrics AlexNet AlexNet (sparse) 
Accuracy (top-5 error) 19.8 19.8 
# of Conv Layers 5 5 
# of Weights 2.3M 2.3M 
# of MACs 666M 666M 
# of NZ weights 2.3M 863k 
# of NZ MACs 394M 207M 
# of FC layers 3 3 
# of Weights 58.6M 58.6M 
# of MACs 58.6M 58.6M 
# of NZ weights 58.6M 5.9M 
# of NZ MACs 14.4M 2.1M 
Total Weights 61M 61M 
Total MACs 724M 724M 
# of NZ weights 61M 6.8M 
# of NZ MACs 409M 209M 

# of NZ MACs computed based on 50,000 validation images 
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Metrics for DNN Hardware 

•  Measure energy and DRAM access relative to 
number of non-zero MACs and bit-width of MACs 
–  Account for impact of sparsity in weights and activations  
–  Normalize DRAM access based on operand size 

•  Energy Efficiency of Design 
–  pJ/(non-zero weight & activation) 

•  External Memory Bandwidth 
–  DRAM operand access/(non-zero weight & activation) 

•  Area Efficiency 
–  Total chip mm2/multi (also include process technology) 
–  Accounts for on-chip memory 
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ASIC Benchmark (e.g. Eyeriss) 

ASIC Specs 
Process Technology 65nm LP TSMC (1.0V) 
Clock Frequency (MHz) 200 
Number of Multipliers 168 
Total core area (mm2) /total # of multiplier 0.073 
Total on-Chip memory (kB) / total # of multiplier 1.14 
Measured or Simulated Measured 
If Simulated, Syn or PnR? Which corner? n/a 
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ASIC Benchmark (e.g. Eyeriss) 

Metric Units L1 L2 L3 L4 L5 Overall* 
Batch Size # 4 
Bit/Operand # 16 
Energy/ 
non-zero MACs 
(weight & act) 

pJ/MAC 16.5 18.2 29.5 41.6 32.3 21.7 

DRAM access/
non-zero MACs 

Operands/
MAC 0.006 0.003 0.007 0.010 0.008 0.005 

Runtime  ms 20.9 41.9 23.6 18.4 10.5 115.3 
Power mW 332 288 266 235 236 278 

Layer by layer breakdown for AlexNet CONV layers 

* Weighted average of CONV layers 
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Website to Summarize Results 

•  http://eyeriss.mit.edu/benchmarking.html  
•  Send results or feedback to: eyeriss@mit.edu  

Metric Units Input 
Name of CNN Text AlexNet 
# of Images Tested # 100 
Bits per operand # 16 
Batch Size # 4 
# of Non Zero MACs # 409M 
Runtime  ms 115.3 
Utilization vs. Peak % 41 
Power mW 278 
Energy/non-zero  
MACs 

pJ/MAC 21.7 

DRAM access/non-
zero MACs 

operands
/MAC 

0.005 

ASIC Specs Input 
Process Technology 65nm LP 

TSMC (1.0V) 
Clock Frequency 
(MHz) 

200 

Number of Multipliers 168 

Core area (mm2) /
multiplier 

0.073 

On-Chip memory 
(kB) / multiplier 

1.14 

Measured or 
Simulated 

Measured 

If Simulated, Syn or 
PnR? Which corner? 

n/a 
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Implementation-Specific Metrics 

Metric Units AlexNet 
Device  Text Xilinx Virtex-7 XC7V690T 
Utilization DSP # 2,240 

BRAM # 1,024 
LUT # 186,251 
FF # 205,704 

Performance Density GOPs/slice 8.12E-04 

Different devices may have implementation-specific metrics 

Example: FPGAs 
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Tutorial Summary 
•  DNNs are a critical component in the AI revolution, delivering 

record breaking accuracy on many important AI tasks for a wide 
range of applications; however, it comes at the cost of high 
computational complexity 

•  Efficient processing of DNNs is an important area of research with 
many promising opportunities for innovation at various levels of 
hardware design, including algorithm co-design 

•  When considering different DNN solutions it is important to evaluate 
with the appropriate workload in term of both input and model, 
and recognize that they are evolving rapidly. 

•  It’s important to consider a comprehensive set of metrics when 
evaluating different DNN solutions: accuracy, speed, energy, and 
cost 
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Resources 

•  Eyeriss Project: http://eyeriss.mit.edu  
–  Tutorial Slides 

–  Benchmarking 

–  Energy modeling 

–  Mailing List for updates 
•  http://mailman.mit.edu/mailman/listinfo/eems-news  

–  Paper based on today’s tutorial: 
•  V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing 

of Deep Neural Networks: A Tutorial and Survey”, arXiv, 2017 
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