Hybrid Memory Cube

Saptadeep Pal

General perspective in 3D memories

? Why do we need 3D memory technology

• Big performance gap between processor and memory

- 3D memory:
 - Multiple layers of die stacked using TSVs
 - Shorter memory access latency
 - Higher achievable bandwidth

New Developments in 3D Memory Technology

I. High Bandwidth Memory (HBM)

II. Hybrid Memory Cube (HMC)

III. Wide-IO on Interposers

HMC Advantage

High bandwidth with its scalability, power efficiency, PCB connectivity between host&DRAM, lower latency

REQUIREMENTS

HMC_{Gen1}: Technology Comparison

Technology	V DD	IDD	BW/GB/s	Power (W)	mW/GB/s	pj/ bit	real pJ/ bit
SDRAM PC133 1GB Module	3.3	1.50	1.06	4.96	4664.97	583.12	762
DDR-333 1GB Module	2.5	2.19	2.66	5.48	2057.06	257.13	245
DDRII-667 2GB Module	1.8	2.88	5.34	5.18	971.51	121.44	139
DDR3-1333 2GB Module	1.5	3.68	10.66	5.52	517.63	64.70	52
DDR4-2667 4GB Module	1.2	5.50	21.34	6.60	309.34	38.67	39
HMC, 4 DRAM w/ Logic	1.2	9.23	128.00	11.08	86.53	10.82	13.7

Generation 1 (4 + 1 memory configuration)

High-Performance Memory Comparison | What does it take to support 60 GB/s? Single-Link HMC vs. DDR3L-1600 and DDR4-2133 (at MAX memory bandwidth) TCO VALUATION

Channel Complexity	90% simpler than DDR3L 88% simpler than DDR4	0	250	500	750	pins
Board Footprint	95% smaller than DDR3L 94% smaller than DDR4	0	3,000	6,000	9,000	mm²
Energy Efficiency	66% greener than DDR3L 55% greener than DDR4	0	20	40	60	pJ/bit
Bandwidth	10.2X greater than DDR3L 8.5X greater than DDR4	0	300	600	900	MB/pin

HBM vs. HMC

	НВМ	НМС			
	Si Interposer	DRAM Layers			
PKG type	MPGA(Micro Pillar Grid Array)	BGA			
Logic function	Buffer / Rerouting	Memory controller, SERDES			
CMD protocol	Deterministic	Non-deterministic			
Max. bandwidth	128~256GB/s	4link: ~160GB/s, 8link: ~320GB/s			
Power* / Chip size	1X / 1X	1X(USR**) / 1.1X **Ultra Short Reach			
Capacity per cube	2/4GB	2/4/8GB			
# of bank	~128banks (@4GB)	~512banks (@8GB)			
Capacity extension	нвм СРU НВМ НВМ	Host HMC Het HMC			

Target Market:

HBM: high-performance graphics accelerators and network devices

HMC: High end servers, high end enterprise

HMC architecture

- Each vault has a memory controller (called a vault controller) which determines it own timing.
- All in-band communication across a link is packetized.
- Each vault controller determines its own timing requirement
- Refresh operations are controlled by the vault controller, eliminating this function from the host memory controller
- Responses from vault operations back to the external serial I/O links will be out of order. However, requests from a single external serial link to the same vault/bank address are executed in order
- There is no specific timing associated with memory requests. The vaults generally reorder their internal requests to optimize bandwidths and to reduce average latencies

Logic Base Architecture

The logic base manages multiple functions for the HMC

• All HMC I/O, implemented as multiple serialized, fully duplexed links

• Memory control for each vault; Data routing and buffering between I/O links and vaults

- Consolidated functions removed from the memory die to the controller
- Mode and configuration registers
- BIST for the memory and logic layer
- Test access port compliant to JTAG IEEE 1149.1-2001, 1149.6
- Some spare resources enabling field recovery from some internal hard faults

HMC Near Memory and Far Memory

All links between HMC and Host CPU.

Maximum bandwidth per GB capacity

- HPC/Server CPU/GPU
- Graphics
- Networking systems
- Test equipment

HMC links connect to host or other cubes

- Links form networks of cubes.
- Scalable to meet system requirements

HMC Reliability

Built-In RAS features at a high level...

HMC Products in Market now

- Xeon Phi
- Micron's short reach HMC SERDES PHY
- Xilinx Virtex-7 FPGAs support HMC 10