
NanoCAD Lab UCLA

Map Reduce
Group Meeting

Yasmine Badr

10/07/2014

A	
 lot	
 of	
 material	
 in	
 this	
 presenta0on	
 has	
 been	
 adopted	
 from	
 the	

original	
 MapReduce	
 paper	
 in	
 OSDI	
 2004	

NanoCAD Lab UCLA

What is Map Reduce?
•  Programming paradigm/model for processing of

large data sets in parallel on large distributed
clusters

•  The framework or runtime system takes care of:
–  partitioning input data,
–  scheduling,
–  fault tolerance and
–  communication

•  Programs are written in functional style
•  Basically an abstraction

2	

NanoCAD Lab UCLA

Programming Model of MapReduce
•  Input & output are

sets of key-value
pairs

•  Programmer
expresses
computation as 2
functions: Map
and Reduce

3	

Input	
 K-­‐V	

pairs	
 Intermeduiate	

K-­‐V	
 pairs	

NanoCAD Lab UCLA

Programming Model of MapReduce
(cont’d)
•  Map function:

–  Takes input K-V pair and produces a set of intermediate K-V
pairs

•  MapReduce library
–  groups together all intermediate values associated with same

intermediate key & passes them to Reduce function

•  Reduce function:
–  accepts an intermediate key and a set of values for that key.
–  merges together these values to form a possibly smaller set of

values.
–  Typically just zero or one output value is produced per Reduce

4	

NanoCAD Lab UCLA

Example: Pseudo code to count number
of occurrences of words [O.P.]

5	

NanoCAD Lab UCLA

Execution Overview [O.P]

6	

NanoCAD Lab UCLA

Execution Overview (cont’d)
1.  Map Reduce library splits input files into M pieces. Then it starts up multiple

workers. One of them is master.
2.  Master picks idle workers and assigns each one a map or reduce task.

–  M MAP tasks and R reduce tasks in total
3.  A MAP worker, when assigned a MAP task

–  Parses its share of key-value pairs and passes each pair to the Map function.
–  Output of Map is intermediate K-V pairs

•  buffered in memory.
•  periodically partitioned into R regions on local disk (uses hashing function)
•  Locations on the disk are passed to master, which forwards it to the

reduce workers
4.  When a REDUCE worker is notified by master, it

–  Uses remote procedure calls to read data from local disks of MAP workers
–  Sorts data by intermediate keys, so all occurrences of same key are grouped

together
–  Iterates on sorted data and for each key calls the Reduce function.
–  Appends output of Reduce function to final output file for this reduce partition

5.  When all MAP and REDUCE workers complete, master wakes up user programà
back to user code

7	

NanoCAD Lab UCLA

Fault Tolerance
•  To tolerate failing machines:

–  Worker failure:
•  Master pings worker periodically
•  No responseè marked as failed

 èmap tasks completed or in progress
 are eligible for re-scheduling
 èWorkers executing reduce tasks are notified

of the re-execution
•  In case of large-scale failures (like network maintenance on a

cluster) master re-executes tasks done by unreachable
workers

–  Master failure:
•  Unlikely failure but can be handled by writing periodic

checkpoints and starting another master

8	

NanoCAD Lab UCLA

Map Reduce libraries
•  HADOOP

–  Open Source by Apache
–  In Java
–  Can be used with C++, Java, Python
–  Uses Hadoop Distributed File System (HDFS)
–  Interfaces on top of it:

•  Amazon Elastic Map Reduce to use Amazon cloud compute
•  Hive
•  Cloudera

–  Most popular
•  MARS

–  On GPUs
–  In CUDA

•  Others including open and closed source

9	

NanoCAD Lab UCLA

Other Examples
•  Distributed Grep:

–  Map function: emits a line if it matches pattern.
–  Reduce function: just copies the supplied intermediate

data to the output
•  Distributed Sort:

–  Map function: extracts the key from each record, and
produces a (key, record) pair.

–  Reduce function: emits all pairs unchanged.
–  It depends on the partition and order facilities in the

execution overview
–  Incl. startup overhead, performed similar to best

reported result for TeraSort benchmark at that time

10	

NanoCAD Lab UCLA

Google used it for
•  Large scale Machine Learning problems
•  Indexing
•  Clustering problems for google news
•  Large-scale graph computations

11	

NanoCAD Lab UCLA

Task Granularity: M & R
•  Map phase is M pieces
•  Reduce phase is R pieces
•  M, R>> number of machines

–  Improves dynamic load balancing
–  Faster recovery when a worker fails

•  Practical bounds:
–  Master takes O(M+R) scheduling decisions
–  Master keeps O(M*R) state in memory (~byte each)
–  R usually constrained by users because output of each reduce

task ends up in separate file
•  In practice (2004): they choose M so that each individual task ~16 to

64MB of input data so that locality optimization is most effective
(M=200K, R=5K on 2000 workers)

12	

NanoCAD Lab UCLA

Map Reduce…
•  Proposed by Google in 2003
•  Later Open sourced
•  According to Data Center Knowledge article in

June 2014, Google abanoned it lately and is
using Cloud Dataflow because MapReduce
didn’t work well when the data size reached few
petabytes!! L

http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-
favor-new-hyper-scale-analytics-system/,

13	

NanoCAD Lab UCLA

References
[O.P.] Dean, Jeffrey, Sanjay Ghemawat. “MapReduce simplified data
processing on large clusters." OSDI 2004
[G.V.] Cluster Computing and Map Reduce course by Google
https://www.youtube.com/watch?v=-
vD6PUdf3Js&list=PLD20C9DE1E63E1617&index=2
http://www.slideshare.net/tugrulh/distributed-computing-seminar-
lecture-2-mapreduce-theory-and-implementation?related=1
[J.E.G]examples
http://www.java2s.com/Code/Jar/h/hadoop-mapreduce.htm

14	

NanoCAD Lab UCLA

BACKUP

15	

NanoCAD Lab UCLA

Locality
•  We conserve network bandwidth by taking advantage of

the fact that the input data (managed by GFS) is stored
on the local disks of the machines that make up our
cluster. GFS divides each file into 64 MB blocks, and
stores several copies of each block (typically 3 copies)
on different machines.

•  Master takes location information of input files into
account and attempts to schedule a map task on a
machine that contains a replica of the corresponding
input data. Failing that, it attempts to schedule map task
near a replica of that task's input data (e.g., on worker
machine on same network switch as machine containing
the data).

NanoCAD Lab UCLA

Functional Programming
•  MapReduce is Inspired from Functional

programming languages like LISP
– Functional programming vs imperative languages

•  Functional:
–  do not modify data, create new ones. Oder of operations

doesn’t matter, each operation is creating a copy
– Declarative programming(programming with

expressions)

17	

NanoCAD Lab UCLA

How is it like?
•  Most of computations consist of applying a map

operation to each logical record. in our input in
order to compute a set of intermediate key/value
pairs, and then applying a reduce operation to
all the values that shared the same key, in order
to combine the derived data appropriately.

18	

NanoCAD Lab UCLA

Why?
•  Large input data
•  Computations are often straightforward but need to be distributed
•  MapReduce is an abstraction that allows programmers to express

the simple computations but hides the messy details of
parallelization, fault-tolerance, data distribution and load balancing
in a library

19	

NanoCAD Lab UCLA 20	

