

Multiple E-beam Direct Write & REBL

Yasmine Badr

Electron Beam Lithography Evolution [5]

Pixels/shot

NanoCAD Lab

Motivation

"For the first time in half a century, electron-beam lithography shows signs of living up to its promise of manufacturing semiconductor circuits in high volume."

--Burn Lin, TSMC, Taiwan

14 January 2013, SPIE Newsroom

Motivation (cont'd)

- Reasons:
 - Improvement in speed of e-beam writing
 - Can now support a several orders of magnitude increase in beam number
- Alternatively for same resolution as e-beam:
 - optical systems:
 - pitch splitting with multiple patterning → complexity and cost.
 - EUV: costly and difficult

E-beam

- + Resolution
- + Depth of Focus
 - Ebeam: DoF> 1um with 10% exposure latitude.
 - Optical systems: DoF <100nm.
- + No mask
- -Throughput

E-beam Character Projection

NanoCAD Lab

Design for E-beam: Character Projection [4]

- Co-design of the standard cell library with the stencil mask
 - once per library
 - 10-20X speedups in e-beam

Reflective Electron Beam Lithography (REBL) [2]

- By KLA-Tencor
- Target:16nm
- Throughput target: 100 wph Project

Reflective Electron Beam Lithography (REBEL) [2]

- uses a reflective dynamic pattern generator (DPG)
 - to modulate the aerial image of a large area electron beam

REBL (cont'd)

- Reflective DPG (Dynamic Pattern Generator):
 - array of 248 by 4096 pixels
 - each pixel separately controlled by a CMOS circuit underneath it
 - microfabricated lenslets on top of pixels to prevent crosstalk

REBL (cont'd)

- Reflective DPG (Dynamic Pattern Generator):
 - By switching voltage (2v) of electrode of pixel, electrons from electron gun can be either :
 - reflected back into projection optics ("on" pixel) or
 - absorbed by electrode ("off" pixel).

REBL (cont'd)

- EXB: electromagnetic filter
- Projection optics:
 - demagnify DPG image by 100X onto moving stage.
- WMS: Wafer metrology site
 - Optically measures wafer position

Mask Data Preparation

- Proximity Correction using LP [6]
 - Minimize total exposure time
 - Subject to :
 - all required pixels receive above-threshold dose and
 - non-required pixels receive below-threshold dose

Rendering Data

- Render the data: convert it into pixels with gray level assignments.
 - Use proximity corrected data
- Converted pattern sent for writing
- Gray level pixel data distributed to each DPG during the writing process

Multiple beams in REBL

- As many as 36 columns can be clustered on either a rotary stage or six linear stages.
 - However seems like their current only uses one column
- Performance target: 100 wph [2]

References

[1] Burn Lin; "Multiple-electron-beam direct-write comes of age"; SPIE Newsroom, Jan **2013**

[2] McCord, M. A.; Petric, P.; Ummethala, U.; Carroll, A.; Kojima, S.; Grella, L.; Shriyan, S.; Rettner, C. T. & Bevis, C. F.; "REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography", *Proc. SPIE*, **2012**

[3] McCord, M. A.; Petric, P.; Ummethala, U.; Carroll, A.; Kojima, S.; Grella, L.; Shriyan, S.; Rettner, C. T. & Bevis, C. F.; "REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography", **2012**

[4] Fujimura, A.; "Design for e-beam: design insights for direct-write maskless lithography"; *SPIE Photomask Technology*, **2010**

[5] Pfeiffer, H. C.; "Direct write electron beam lithography: a historical overview" *Proc. of SPIE Vol*, **2010**

[6] Carroll, A. M.Proximity-effect correction with linear programming; *Journal of Applied Physics, AIP*, **1981**