
SoftWare Implemented Fault

Tolerance (SWIFT)

Ankur Sharma
Dec10, 2012

NanoCAD Lab

Error Detection by Duplicating

Instructions (EDDI) [1]

• Insert a shadow (duplicate)

instruction for every master

(original) instruction

– Master and shadow

instructions use

different registers

• Compare the results before

stores

NanoCAD Lab

Comparing at Branches

For correctness, need to verify
• What is getting stored
• Where its getting stored
• Is this store supposed to

happen

‘What’ and ‘Where’ checks
require comparing operands

Last check requires comparison
at every branch as well

Store 1

Store 2

Comparison before
executing branch

Branch

NanoCAD Lab

1

Error During Branch Execution

• Comparison before branch
indicates no error so far

• Branch executes …
• ERROR while executing the

branch
• Result: Incorrect target

2

3

4

Basic Block:
Sequence of
instructions
without any
branching in
between, may be
at the end

Illegal Branch

Need for control flow checking

NanoCAD Lab

Control Flow Checking by Software

Signatures (CFCSS) [2]

Aim: Avoiding illegal branching

Solution:
1. Assign a unique signature to every node (basic block) at compile time.
2. Store signature and signature difference with each node.
3. Maintain a general signature register (GSR) containing signature of the current node
4. Add the difference stored with destination node to the current GSR and compare if

it matches the signature of the destination node

Key Idea: Source node and
destination node uniquely
determine the branch

1

3

5 2

4

1^5

2^3

1^2

2^4

signature difference

signature

1^(1^5) = 5 -> Legal
1^(2^4) != 4 -> Illegal

NanoCAD Lab

SWIFT [3] Contribution 1:

Enhanced Control Flow Checking

• CFCSS detects legality of the branch

• But doesn’t detect the correctness of the branch

• Source block stores signature difference in RTS
• Target updates GSR by adding RTS to it

1

5 2

Branch should go to 2
but ends up going to 5

RTS = 1^2
GSR = 1

GSR = GSR^RTS
 = 2
NO ERROR

GSR = GSR^RTS
 = 1^ (1^2) != 5
 ERROR!!

NanoCAD Lab

SWIFT Contribution 2:

Store Control Flow Optimization

Observation: Only stores are problematic

Optimization: Perform control flow checking
only for those nodes that has a store. RTS and
GSR computation happens in every block.

1

5 2

Correct path: 1->2->4
Actual path taken: 1->5->4
4 has a store but 2,5 don’t.

GSR = 1
RTS = 1^2

GSR = GSR^RTS = 1^ (1^2) = 2
RTS = 5^4

4

GSR = 2
RTS = 2^4

GSR = 2^ (2^4) = 4
NO ERROR

GSR = 2^ (5^4) != 4
ERROR

NanoCAD Lab

SWIFT Contribution 3:

Branch Optimization

Observation: Control flow checks are super set of

comparisons performed before executing branches.

So latter can be eliminated.

…

bne $s,$t,L1

…

L1:

…

…

cmp.ne.s p1, p0=$s,$t

(p1) br L1

…

L1:

…

Without Predication With Predication

block 1

block 2

NanoCAD Lab

Branch Optimization (cont’d)

Before jumping to target, RTS is evaluated, if there was an
error before branching, then RTS evaluated would be
incorrect, and detected later on.

…

cmp.ne.s p1, p0=$s,$t

cmp.ne.s p1’, p0’=$s’,$t’

// Instructions for

// comparing p1 and p1’

…

(p1’) RTS = s1^s2

(p1) br L1

…

L1:

…

block 1

block 2

Can be eliminated

Code with duplicated instructions

NanoCAD Lab

Results from Benchmarks

No Fault Tolerance EDDI+CFCSS SWIFT

Execution Time 1.00 1.61 1.41

Static binary size 1.00 2.83 2.40

Fault Detection 0 100% 100%

• Optimizations helped reduce the static binary size and
improve the performance over EDDI+CFCSS

• No loss in reliability

NanoCAD Lab

Undetected Errors

• Opcode changed to store instruction

• Multibit error – both master and shadow get similarly

corrupted

References:
[1] Reis, George A., et al. "SWIFT: Software implemented fault tolerance." Proceedings of the
international symposium on Code generation and optimization. IEEE Computer Society,
2005.
[2] Oh, Nahmsuk, Philip P. Shirvani, and Edward J. McCluskey. "Control-flow checking by
software signatures." Reliability, IEEE Transactions on 51.1 (2002): 111-122.
[3] Oh, Nahmsuk, Philip P. Shirvani, and Edward J. McCluskey. "Error detection by duplicated
instructions in super-scalar processors." Reliability, IEEE Transactions on 51.1 (2002): 63-75.

