Transactional Memory

Liangzhen Lai

UCLA

Outline

* Transactional Memory vs. Lock
» Data Versioning
« Conflict Detection

« Hardware TM vs. Software TM

NanoCAD Lab

UCLA

Memory Interleaving

Thread |
A = counter //read

(-..)

A++
counter = A //write

NanoCAD Lab

Thread I
A = counter //read

(...)

A++
counter = A //write

R1->W1->R2->W2: counter +=2
R1->R2->W2->W1: counter +=1
R1->R2->W1->W2: counter +=1

UCLA

Transaction vs. Lock

Lock
Lock(counter)
A = counter //read

Transaction
Atomic{
A = counter //read

(..

A++
counter = A //write

(..

A
counter = A //write
Unlock(counter)

}

* Transaction guarantees atomicity
 Programmers worry about program

Lock guarantees variable ownership
Programmers worry about lock

atomicity and transaction boundary locations to guarantee correctness
« System designers worry about « System designers are happy~
implementation « Lock blocks other thread to read the
* Transaction abort makes exception variable
handler easier « Read/Write lock is even tougher to
use

NanoCAD Lab

UCLA

Transactional Memory

« EXxecute each transaction atomically
— All or nothing
— No interference from other threads
» Data versioning
— Store both old and new version
» Conflict detection
— Detect memory interleavings that violate the atomicity

NanoCAD Lab

UCLA

Data Versioning

» Eager Versioning
— Update inplace for each memory write
— Store old values somewhere
— Proceed upon commit or restore upon abort

» Lazy Versioning
— Maintain a write buffer to memory write
— Write the values into memory upon commit or clear upon abort

NanoCAD Lab

UCLA

Conflict Detection

« Condition: write-set of one thread overlaps with
either read-set or write-set of another thread

« Stall (Eager Detection)

— Avoid giving up already finished work

— Can result in deadlock ey E—r"
 Abort (Lazy Detection) e A e 8

(...) ()
— Canresultin livelock ESEE Read A

NanoCAD Lab

UCLA

Software Transactional Memory

* Implemented entirely on software

A User Code B Compiled Code Heavily relied on compiler optimization
of the instrumentation

int foo (int ar . . .
(B) Hard to guarantee isolation of transactional

int foo (int arg)

{ jmpbuf env: and nontransactional code
atomic do {
{ if (setjmp(&env) == 0) {
b=a+5; stmStart(); €= Data versioning
3 temp = stmRead(&a);
temp1 = temp + 5; > Data access barrier
} stmWrite(&b, temp1);
stmCommit(); €——____ Transaction completes and results
break; are visible to other threads
3
} while (1);

NanoCAD Lab

UCLA

Hardware Transactional Memory

» Data Versioning

— Use cache hierarchy
— Hardware write-buffer/Software thread log
— Be aware of cache overflow!

 Conflict Detection

— Use cache coherence protocol
— Associate W/R bit for each cache line
— Be aware of cache overflow!

« Contention Management
— Random back-off (avoid live lock)
— Priority-forced abort (avoid dead lock)

NanoCAD Lab

