
Transactional Memory

Liangzhen Lai

NanoCAD Lab

Outline

• Transactional Memory vs. Lock

• Data Versioning

• Conflict Detection

• Hardware TM vs. Software TM

NanoCAD Lab

Memory Interleaving

Thread I
A = counter //read
(…)
A++
counter = A //write

Thread II
A = counter //read
(…)
A++
counter = A //write

R1->W1->R2->W2: counter +=2
R1->R2->W2->W1: counter +=1
R1->R2->W1->W2: counter +=1

NanoCAD Lab

Transaction vs. Lock

Transaction
Atomic{
 A = counter //read
 (…)
 A++
 counter = A //write
}

Lock
Lock(counter)
A = counter //read
(…)
A++
counter = A //write
Unlock(counter)

• Transaction guarantees atomicity

• Programmers worry about program

atomicity and transaction boundary

• System designers worry about

implementation

• Transaction abort makes exception

handler easier

• Lock guarantees variable ownership

• Programmers worry about lock

locations to guarantee correctness

• System designers are happy~

• Lock blocks other thread to read the

variable

• Read/Write lock is even tougher to

use

NanoCAD Lab

Transactional Memory

• Execute each transaction atomically

– All or nothing

– No interference from other threads

• Data versioning

– Store both old and new version

• Conflict detection

– Detect memory interleavings that violate the atomicity

NanoCAD Lab

Data Versioning

• Eager Versioning
– Update inplace for each memory write

– Store old values somewhere

– Proceed upon commit or restore upon abort

• Lazy Versioning
– Maintain a write buffer to memory write

– Write the values into memory upon commit or clear upon abort

NanoCAD Lab

Conflict Detection

• Condition: write-set of one thread overlaps with

either read-set or write-set of another thread

• Stall (Eager Detection)

– Avoid giving up already finished work

– Can result in deadlock

• Abort (Lazy Detection)

– Can result in livelock

Thread I
Write A
(…)
Read B

Thread II
Write B
(…)
Read A

NanoCAD Lab

Software Transactional Memory

• Implemented entirely on software

Data versioning

Data access barrier

Transaction completes and results
are visible to other threads

Heavily relied on compiler optimization
of the instrumentation
Hard to guarantee isolation of transactional
and nontransactional code

NanoCAD Lab

Hardware Transactional Memory

• Data Versioning
– Use cache hierarchy

– Hardware write-buffer/Software thread log

– Be aware of cache overflow!

• Conflict Detection
– Use cache coherence protocol

– Associate W/R bit for each cache line

– Be aware of cache overflow!

• Contention Management
– Random back-off (avoid live lock)

– Priority-forced abort (avoid dead lock)

