

Lagrangian Relaxation

NanoCad Tutorial 4/17/2012

Lagrangian Relaxation

• Suppose that

minimize
$$f(x)$$
, subject to $f_i(x) \leq 0$

Is difficult to solve

• However, suppose that minimize $f(x) + f_i(x)$

Is easy

• Then consider Lagrangian Relaxation

Lagrangian Relaxation

• Idea: Optimize the Lagrangian of

minimize f(x), subject to $f_i(x) \leq 0$

Which is:

$$L(x,\lambda) = f(x) + \sum_{i} \lambda_{i} f_{i}(x)$$

• Finally, instead of solving:

minimize f(x), subject to $f_i(x) \leq 0$ Solve

$$\max_{\lambda} \min_{x} (L(x, \lambda))$$

Lagrangian Relaxation Details

• Details

$$\max_{\lambda}\min_{x}(L(x,\lambda))$$

Has two optimizations (min x, max lambda)

- This is only good if min x is very efficient
- When are

 $\max_{\lambda} \min_{x} (L(x, \lambda))$ minimize f(x), subject to $f_{i}(x) \leq 0$ Equivalent?

• Sufficient – convex and strictly feasible; Necessary: ?

Everett's Theorem

Everett's Theorem Let us start with a very elementary observation. Suppose we have maximized $L(\cdot, u)$ for a certain u, and thus obtained an optimal x_u , together with its constraint-value $c(x_u) \in \mathbb{R}^m$; set $g_u := -c(x_u)$ and take an arbitrary $x \in \mathcal{X}$ such that $c(x) = -g_u$. By definition, $L(x, u) \leq L(x_u, u)$, which can be written

$$f(x) \leq f(x_u) - u^{\top} c(x_u) + u^{\top} c(x) = f(x_u).$$
 (23)

This is a useful result for approximate resolutions of (1):

Theorem 12 (Everett) With the notation above, x_u solves the following perturbation of (1):

$$\max f(x), \quad x \in \mathcal{X}, \quad c(x) = -g_u. \qquad \Box$$

Examples

• Integer Programming

$$\min \sum_{i,j=1}^{n} Q_{ij} x_i x_j = x^{\top} Q x, \quad x_i^2 = 1, \ i = 1, \dots, n.$$

becomes

$$L(x,u) = x^{\top}Qx - \sum_{i=1}^{n} u_i(x_i^2 - 1) = x^{\top}(Q - D(u))x + e^{\top}u;$$

which is just $\max e^{\top} u$, subject to $Q - D(u) \succeq 0$.

Gate Sizing (Network Optimization Problem)

minimize
$$\sum_{g} p_{g} w_{g}$$

Subject to $t_{a(g)} + d_{i}(g, w) \leq t_{a(g')}$ for $g' \in \text{fanout}(g)$
 $t_{i} \leq T_{\text{max}}$

$$L(w, t_a, \lambda) = \sum_{g \in \mathcal{G}} p_g w_g$$

+ $\sum_g \sum_{g' \in \text{fo}(g)} \lambda_{g,g'} (t_{a(g)} + d(g, w) - t_{a(g')})$
+ $\sum_{g \in \text{PO}} \lambda_g (t_{a(g)} - T_{\text{max}}).$

Gate Sizing

$$\begin{split} L(w, t_a, \lambda) &= \sum_{g \in \mathcal{G}} p_g w_g \\ &+ \sum_g \sum_{g' \in \mathrm{fo}(g)} \lambda_{g,g'}(t_{a(g)} + d(g, w) - t_{a(g')}) \\ &+ \sum_{g \in \mathrm{PO}} \lambda_g(t_{a(g)} - T_{\max}). \end{split}$$
$$L(w, t_a, \lambda) &= \sum_{g \in \mathcal{G}} \left(\sum_{g'' \in \mathrm{fo}(g)} \lambda_{g,g''} - \sum_{g' \in \mathrm{fi}(g)} \lambda_{g',g} \right) \cdot t_{a(g)} \\ &+ \sum_{g \in \mathcal{G}} p_g w_g + \left(\sum_{g \in \mathrm{PO}} \lambda_g \right) \cdot T_{\max} \\ &+ \sum_g \left(\sum_{g' \in \mathrm{fo}(g)} \lambda_{g,g'} \right) d(g, w) \end{split}$$

Gate Sizing

$$L(w, t_a, \lambda) = \sum_{g \in \mathcal{G}} p_g w_g$$

+ $\sum_g \left(\sum_{g' \in \text{fo}(g)} \lambda_{g,g'} \right) d(g, w)$
+ $\left(\sum_{g \in \text{PO}} \lambda_g \right) \cdot T_{\text{max}}.$
$$\max_{\lambda \ge 0} \left\{ \min_{t_a, w_{\min} \le w \le w_{\max}} \left\{ L(w, t_a, \lambda) \right\} \right\}.$$

Gate Sizing

• Minimizing over w

$$L(w, t_a, \lambda) = \sum_{g \in \mathcal{G}} p_g w_g + \sum_g \left(\sum_{g' \in \text{fo}(g)} \lambda_{g,g'} \right) d(g, w) + \left(\sum_{g \in \text{PO}} \lambda_g \right) \cdot T_{\text{max}}.$$

Is very fast. Method iterates between minimizing over w and maximizing over lambda

Summary

- Difficult problems may benefit from Lagrangian Relaxation
 - Problems where minimizing with constraint in objective is easy
- Useful in network flow problems, combinatorial problems
- Can also be used to generate theoretical bounds