
Parallel Computing 

OpenMP and MPI 



NanoCAD Lab 

OpenMP 

• API for shared memory programming 

• Program the threads 

• Supported by C/C++ and Fortran 

MPI 
• API for distributed memory programming 

• Program the processes 

• Works on shared memory parallel 
computers as well 

• Used from C/C++, Fortran, Python, R etc 

 



NanoCAD Lab 

OpenMP 

• Generally used for loop parallelization 

const int n = 10000; 
double x[n], y[n], a; 
int i; 
 
for (i = 0; i < n; i++) { 
    y[i] = a*x[i] + y[i] 
} 

const int n = 10000; 
double x[n], y[n], a; 
int i; 
 
#pragma opm parallel for 
for (i = 0; i < n; i++) { 
    y[i] = a*x[i] + y[i] 
} 

• ‘i’ is private variable by default; ‘a’, ‘y’ and ‘x’ are shared 

 

 

g++ main.cpp g++ main.cpp -fopenmp 

Fork 

Compiler Directive 
In C/C++ for OpenMP 

Directive_name 

Default Barrier 
and Join 



NanoCAD Lab 

OpenMP 

• Another way to parallelize a loop 

#pragma opm parallel 
{ 
    #pragma opm for private(i) 
    { 
        for (i = 0; i < n; i++) { 
            … 
        } 
    } 
} 

By default only outer loop variable is 
private. In order to make any other  
variable private/shared among different 
threads it has to be specified explicitly. 
 
Major part of OpenMP programming is 
deciding what would be shared and 
what would not be. 

• Syntax #include <omp.h> 
.. 
// Parallel Region 
#pragma opm directive_name [Clauses…] 
{ 
    … 
} // end of parallel region 

Clause 

Directives: parallel; for/sections/single;   
  parallel for; barrier/critical/atomic/ordered 

Clauses: shared/private; schedule; nowait; 
  if; reduction; num_threads … 



NanoCAD Lab 

MPI 
• Every processor runs the same code! 

• Only considers process communication; no control over mapping 
processes to CPUs 

• Communicator 
– Processes are numbered 0, 1, … to N-1 

– Default communicator (MPI_COMM_WORLD) contains all processes 

– Query functions 
• MPI_Comm_size(MPI_COMM_WORLD, nproc): gets the number of processes 

• MPI_Comm_rank(MPI_COMM_WORLD, rank): gets the process ID (rank) 

 
 

#include “mpi.h” 
#include <stdio.h> 
main (int argc, char* argv[]) 
{ 
    int np, pid; 
    MPI_Init(&argc, &argv);  // Initializes MPI 
 
    MPI_Comm_size(MPI_COMM_WORLD, &np); 
    MPI_Comm_size(MPI_COMM_WORLD, &pid); 
    printf(“# Proc = %d, Proc ID = %d”, np, pid); 
 
    MPI_Finalize(); // Clean Up 
} 

Compile: mpicxx main.cpp  
Execute: mpiexec –n <num of proc> a.out 



NanoCAD Lab 

MPI 

• MPI_Send(sendbuf, cnt, MPI_INT, des, tag, comm) 

 

 

 

• MPI_Recv(recvbuf, cnt, MPI_INT, src, tag, comm, &stat) 

Starting address  
of send buffer 

# Elems Data Type ID of dest  
proc 

Message Tag 
Communicator 

… 
MPI_Comm_rank(comm, &rank); 
 
if (rank == 0) { 
    MPI_Send(sendbuf, cnt, MPI_INT, 1, 0, MPI_COMM_WORLD); 
    MPI_Recv(recvbuf, cnt, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD, &stat); 
} 
else { // Rank = 1 
    MPI_Send(sendbuf, cnt, MPI_INT, 0, 0, MPI_COMM_WORLD); 
    MPI_Recv(recvbuf, cnt, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &stat); 
} 

Status object 



NanoCAD Lab 

Comparison 

• Pros of OpenMP 

– easier to program and debug than MPI 

– directives can be added incrementally - gradual parallelization 

– can still run the program as a serial code 

– serial code statements usually don't need modification 

– code is easier to understand and maybe more easily maintained 

– no need to install additional libraries, supported by compiler 

 
• Cons of OpenMP 

– can only be run in shared memory computers (shared memory programming) 

– mostly used for loop parallelization  

 
• Pros of MPI 

– runs on either shared or distributed memory architectures (distributed memory programming) 

– can be used on a wider range of problems than OpenMP 

– each process has its own local variables 

– distributed memory computers are less expensive than large shared memory computers 
 

• Cons of MPI 

– requires more programming changes to go from serial to parallel version 

– can be harder to debug 

– performance is limited by the communication network between the nodes 
 

• Source: http://www.dartmouth.edu/~rc/classes/intro_mpi/parallel_prog_compare.html 



NanoCAD Lab 

Resources 

• OpenMP 

– www.openmp.org 

• MPI 

– OpenMPI: www.open-mpi.org 

– MPICH2: 

www.mcs.anl.gov/research/projects/mpich2 

– Download – configure – make – make install 

 

http://www.openmp.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2

