Dynamic Power Management based on variations in Workloads and Hardware

Roadmap

- Motivation
- System-level DPM
- 2-State PSM
- Oracle power policy
 - Break even time (policy parameter)
- Power Management Policies
 - TimeOut
 - Predictive
 - Stochastic
- Adapting to process variations

Motivation

- Longer operation of battery operated and performance constrained portable devices.
- Reduce operation cost of stationary systems.
- Minimize the impact on environment heat dissipation and cooling-induced noise.
- Avoid performance deterioration due to uncontrolled rise in temperature.

System Level DPM

- Power Manageable Components (PMC)
 - Multiple modes of operations that span power/performance trade-off.
 Modeled as Power State Machine (PSM)
 - Transition overheads
- Power Manageable System
 - Set of interacting PMC's and non-PMC's
- Power Manageable Network
 - Actively communicating systems
 - Predict communication patterns
 - Decentralized power management

PSM

System Level DPM

- Task of system level power manager
 - If a PMC is idle and it saves power and thus, cost, to be in a low-power state, then switch the state.
 - This requires, for every PCM
 - Knowledge of the idle periods i.e. workload model
 - Power/performance characteristics of each state i.e. power state machine

2-State PSM

• We shall be using 2 state PSM

Oracle Power Policy

- Assumptions
 - Workload is known a priori
 - Power characteristics of states are known and fixed
- Break Even Time (T_{be})
 - T_{idle} that is long enough to compensate for transition power overheads. So, in case, transition happens at the beginning of T_{idle} and $T_{idle}=T_{be}$ then, net power consumed in transitions and low power state (OFF) would be equal to the power consumed in high power state (ON), if transition won't have happened.
 - Policy parameter
- Policy says if $T_{idle} > T_{be}$, then transition will happen.
- Ideal policy

Power Management Policies

- Classified based on the prediction method whether $T_{idle} > T_{be}$.
 - Time Out
 - Predictive
 - Stochastic

Each one can be adaptive or non-adaptive

Time Out

- If, $T_{idle} > \tau \Rightarrow T_{idle} > \tau + T_{be}$, where τ is the time out value.
- Disadvantage: Power wasted during the time out period

Types of time out policies:

- Fixed Time Out (non-adaptive)
- Adaptive Time Out (ATO)
 - $\tau_{\rm new}$ is updated depending upon ratio of $\tau_{\rm old}$ and previous idle period.
 - Ratio too small, increase τ , else if too large, decrease τ .
- Device Dependent Time Out (DDT)
 - $-\tau$ is set to T_{be}
 - Atmost twice the energy of 'oracle' policy is consumed

Predictive

- Predict the length of idle period before it begins, thus eliminating the time out period.
- Predictions based on previous busy, predicted idle periods and/or actual idle period(s)
- Adaptive learning tree
 - Similar to multi-bit branch prediction in μP
 - Based on history of the node and confidence level
- Exponential Average policy $\rho[n+1] = a * I[n] + (1-a) * \rho[n], a < 1$

Stochastic

• Models arrival of requests and device power state changes as controlled Markov processes.

 Optimal probability for the device to sleep is obtained from solving stochastic optimization problem

Stochastic

Static Approach

- *A priori* knowledge of Markov model for Service Provider (system states) and Service Requester (workload)
- Adaptive Approach
 - Accounts for non-stationary nature of the workloads. Uses policy pre-characterization, parameter learning and policy interpolation.

Stochastic

Can account for

- Multiple low power states
- Uncertainty in system power consumption and transition times
- Compute globally optimum solution
- Explore trade-offs between power and performance in a controlled fashion
- Disadvantage: Performance and power obtained by this policy are expected values

Hardware Variations Aware

Methodology

- Mean value based policy is sub-optimal
- Policy parameter value, T_{be} needs to derived to optimize power consumption distribution instead of deterministic measure of power.
- Two approaches to
 - Design specific: A set of parameter values are derived to be used across all instances, in order to optimize a specific metric of power consumption distribution.
 - Chip specific: Specific to an instance of a chip, set of optimal parameter values is derived depending on its power characteristics