Mask Data Preparation (MDP)

Roadmap

- Layout data and Mask data
- Quality of mask data
- MDP flow
- Fracturing
 - Grid division
 - Merger
- Sources

Layout data and Mask data

- Layout data: Representation of an IC in terms of geometrical shapes spread across one or more layers. Stored in file formats like GDSII, Oasis, Mebes etc.
- Mask data: Layout data fractured into rectangles/trapezoids, required to synthesize photomasks (stencil). Contains only rectangles and/or trapezoids. Stored in file formats like Jeol, VSB12.

Layout data

Single layer (layer 1) top-view

Multi-layer cross-sectional view

Quality of mask data

- Factors determining mask quality
 - Sliver Count
 - All Angle Split
 - Critical Dimension (CD) Split
 - Figure Perimeter & Shot Perimeter
 - Figure Count & Shot Count

MDP Flow

- Ray Based Fracturer
 - Rays are shot from convex vertices and costs are assigned to every ray segment.
 - Selects the ray segments with least cost.

 Memory consumed in storing ray segments is O(n²), where 'n' is the number of vertices. Therefore, input shape can not be too large.

- Pre processing the fracturing data
 - Method 1: Grid division
 - Method 2: Merger
- Grid division

Issue 3: Uneven distribution of vertices

- Merger
 - Shape aware partitioning
 - Trapezoidalize the input shape
 - Cluster the 'essential' trapezoids

Original Shape

Trapezoidalized Shape

Clusters

- Advantages of Clustering
 - Lesser slivers
 - Faster
- Disadvantages of Clustering
 - 'Not so good looking' mask output, usually dominated by long clusters.
 - Increase in figure perimeter
 - Increase in figure count

Sources

http://en.wikipedia.org/wiki/IC_layout