Behavioral Approach for Exact and Approximate Modeling

Liangzhen Lai

I. Markovsky, etc. "Exact and Approximate Modeling of Linear Systems -A Behavioral Approach"

Outline

- Introduction
- Behavioral Approach
- Definitions
- Examples

Introduction

- Modeling: use something simpler, well understood, replicable, applicable to represent/mimic/explain something complex, mysterious, autonomous.
- Key points:
- Data: by disturbance and observation
- Constraints: knowledge about the system
- Evaluation: misfit, latency

Behavioral Approach

- Input-State-Output Approach
- Classify data into input and output
- Represent the model by defining the relation between input and output
- For example: transfer function
- Behavioral Approach
- Group all data as observation
- Represent the model using observed data
- For example: data matrix

Definitions

- U: Universion of all possible outcomes
- D: Observed data
- B: model

A model B is a subset of U which explains D

$$
D \subseteq B \subseteq U
$$

B_{1} is more powerful than B_{2} if

$$
D \subseteq B_{1} \subset B_{2} \subseteq U
$$

Due to noise or approximation, B may not explain D
Assume D^{B} is the data predicted by B

- M: misfit $\quad M(D, B)=\left\|M\left(d_{1}, d_{1}^{B}\right), \ldots\right\|$

Example

- We have data D consisting of 2 variables and 10 data points
- We want a linear model that passes through origin $(0,0)$ which minimize the misfit M

Misfit

- We can define misfit function M(D,B)
- If we define it as 2-norm
$\min _{B}\left\{\min _{D^{B}}\left\{\left\|D-D^{B}\right\|_{2}, D^{B} \in B\right\},(0,0) \in B\right\}$
- It is total-least-square (TLS) problem

Solution

Let $D=U \Sigma V^{T}$ be ranking singular value decomposition

$$
U=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right] \quad V=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]
$$

Then we can have $D^{B}=U_{1} \sum_{1} V_{1}^{T}$

Misfit

- We can define misfit function $M(D, B)$
- If we define it as weighted 2-norm
$\min _{B}\left\{\min _{D^{B}}\left\{\left\|W_{L}\left(D-D^{B}\right) W_{R}\right\|_{2}, D^{B} \in B\right\},(0,0) \in B\right\}$
- It becomes a generalized TLS
Let D_{m} be the modified data matrix $D_{m}=\sqrt{w_{l}} D \sqrt{w_{r}}$
Then the problem is transformed into TLS on D_{m}

