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Introduction

What is estimation?

“Estimation is the process of extracting information from data -
data which can be used to infer the desired information and may
contain errors.”
– Arthur Gelb, Applied Optimal Estimation

Idea: extract information from noisy data
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Linear least squares and least norm estimates

Linear least squares and least norm estimates

Assume no information on the probability distribution of the error

Work with linear equations:

Ax = b (1)

where A and b are known, and x is a vector of unknowns

Examples

Linear least-squares fit of a data – fit a line to data
Minimum norm fit – find the parameters that fit the data with
minimum norm
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Linear least squares and least norm estimates

Linear least squares

Suppose we have an overdetermined set of equations:

Ax = b (2)

where |b| > |x | (there are more data points b than parameters x). The
estimate x̂ that minimizes ||Ax − b||2 is given by:

x̂ = (ATA)−1ATb (3)

Proof.

||Ax − b||2 = xTATAx − 2bTAx + bTb (4)

Taking the derivative gives:

2ATAx − 2ATb = 0 (5)

which gives us the desired result
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Linear least squares and least norm estimates

Minimum norm

Suppose we have an underdetermined set of equations:

Ax = b (6)

where |b| < |x | (there are less points b than parameters x). The idea is to
find x̂ that satisfies Ax = b and minimizes ||x ||2. This is given by:

x̂ = AT (AAT )−1b (7)

Proof is left as an exercise.

John Lee (UCLA NanoCAD) Estimation June 19, 2011 5 / 12



Minimum Variance Estimates

Minimum Variance Estimates

Find the estimate that minimizes the variance of the error

Example

Given two measurements, m1 and m2 of m, each with independent, zero
mean Gaussian measurement errors, σ1 and σ2, find the minimum variance
estimate m̂ using the form:

m̂ = α1m1 + α2m2 (8)

John Lee (UCLA NanoCAD) Estimation June 19, 2011 6 / 12



Minimum Variance Estimates

Example, contd

Solution

1 Because the solutions are unbiased, α1 + α2 = 1 (otherwise there will
be an error in the mean value).

2 The variance of m̂ is

α2
1σ

2
1 + α2

2σ
2
2 = (1− α2)

2σ2
1 + α2

2σ
2
2 (9)

Minimizing this gives −2(1− α2)σ
2
1 + 2α2σ

2
2 = 0 and

α2 =
σ2
1

σ2
1 + σ2

2

(10)
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Minimum Variance Estimates

Gauss-Markov Estimate

In general, suppose that we have vectors y , β and ǫ, and a measurement
matrix W related by

y = Wβ + ǫ (11)

y is the measured quantity, β are the underlying systen parameters, and ǫ

is the measurement noise, with covariance Q.
The minimum variance unbiased estimate is

β̂ = (W TQ−1W )−1W TQ−1y (12)

with covariance

E[(β̂ − β)(β̂ − β)T ] = (W TQ−1W )−1 (13)
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Minimum Variance Estimates

General Minimum Variance Estimate

Suppose, as in the previous slide, that

y = Wβ + ǫ (14)

y is the measured quantity, β are the underlying systm parameters, and

Cov[ǫǫT ] = Q (15)

Cov[yyT ] = P (16)

e.g, there is errors in y . The minimum variance unbiased estimate is

β̂ = (P−1 +W TQ−1W )−1W TQ−1y (17)
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Maximum likelihood estimates

Maximum likelihood estimates

Another approach to finding estimates – choose estimate x̂ that is the
most likely
Steps:

1 1. Write the probability distribution function for x .

2 2. Maximize the probability distribution function

3 → the Maximizer is the ML estimate
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Maximum likelihood estimates

Example

Given two measurements, m1 and m2 of m, each with independent
Gaussian measurement errors, σ1 and σ2, find the maximum likelihood
estimate m̂.

Solution

The pdf of m1 and m2 is given by:

p(m) =
∏

i

1

σi
√
2π

exp

(

− 1

2σ2
i

(mi −m)2
)

(18)

(19)

Taking the log yields:

p(m) = −
∑

i

(log(σi
√
2π)) +

∑

i

(

− 1

2σ2
i

(mi −m)2
)

(20)

(21)
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Maximum likelihood estimates

Example contd

The ML estimate is the value of m that maximizes:

p(m) = −
∑

i

log(σi
√
2π) +

∑

i

(

− 1

2σ2
i

(mi −m)2
)

(22)

Differentiating with respect to m gives:

1

σ2
1

(m1 −m) +
1

σ2
2

(m2 −m) = 0 (23)

and that

m̂ =
σ2
2

σ2
1 + σ2

2

m1 +
σ1
2

σ2
1 + σ2

2

m2 (24)

This is equivalent to the minimum variance estimate.
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