Estimation

John Lee
UCLA NanoCAD
June 19, 2011

Introduction

What is estimation?
"Estimation is the process of extracting information from data data which can be used to infer the desired information and may contain errors."

- Arthur Gelb, Applied Optimal Estimation

Idea: extract information from noisy data

Linear least squares and least norm estimates

- Assume no information on the probability distribution of the error
- Work with linear equations:

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where A and b are known, and x is a vector of unknowns

- Examples
- Linear least-squares fit of a data - fit a line to data
- Minimum norm fit - find the parameters that fit the data with minimum norm

Linear least squares

Suppose we have an overdetermined set of equations:

$$
\begin{equation*}
A x=b \tag{2}
\end{equation*}
$$

where $|b|>|x|$ (there are more data points b than parameters x). The estimate \hat{x} that minimizes $\|A x-b\|_{2}$ is given by:

$$
\begin{equation*}
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b \tag{3}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\|A x-b\|_{2}=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b \tag{4}
\end{equation*}
$$

Taking the derivative gives:

$$
\begin{equation*}
2 A^{T} A x-2 A^{T} b=0 \tag{5}
\end{equation*}
$$

which gives us the desired result \square

Minimum norm

Suppose we have an underdetermined set of equations:

$$
\begin{equation*}
A x=b \tag{6}
\end{equation*}
$$

where $|b|<|x|$ (there are less points b than parameters x). The idea is to find \hat{x} that satisfies $A x=b$ and minimizes $\|x\|_{2}$. This is given by:

$$
\begin{equation*}
\hat{x}=A^{T}\left(A A^{T}\right)^{-1} b \tag{7}
\end{equation*}
$$

Proof is left as an exercise.

Minimum Variance Estimates

Find the estimate that minimizes the variance of the error

Example

Given two measurements, m_{1} and m_{2} of m, each with independent, zero mean Gaussian measurement errors, σ_{1} and σ_{2}, find the minimum variance estimate \hat{m} using the form:

$$
\begin{equation*}
\hat{m}=\alpha_{1} m_{1}+\alpha_{2} m_{2} \tag{8}
\end{equation*}
$$

Example, contd

Solution

(1) Because the solutions are unbiased, $\alpha_{1}+\alpha_{2}=1$ (otherwise there will be an error in the mean value).
(2) The variance of \hat{m} is

$$
\begin{equation*}
\alpha_{1}^{2} \sigma_{1}^{2}+\alpha_{2}^{2} \sigma_{2}^{2}=\left(1-\alpha_{2}\right)^{2} \sigma_{1}^{2}+\alpha_{2}^{2} \sigma_{2}^{2} \tag{9}
\end{equation*}
$$

Minimizing this gives $-2\left(1-\alpha_{2}\right) \sigma_{1}^{2}+2 \alpha_{2} \sigma_{2}^{2}=0$ and

$$
\begin{equation*}
\alpha_{2}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{10}
\end{equation*}
$$

Gauss-Markov Estimate

In general, suppose that we have vectors y, β and ϵ, and a measurement matrix W related by

$$
\begin{equation*}
y=W \beta+\epsilon \tag{11}
\end{equation*}
$$

y is the measured quantity, β are the underlying systen parameters, and ϵ is the measurement noise, with covariance Q.
The minimum variance unbiased estimate is

$$
\begin{equation*}
\hat{\beta}=\left(W^{T} Q^{-1} W\right)^{-1} W^{T} Q^{-1} y \tag{12}
\end{equation*}
$$

with covariance

$$
\begin{equation*}
\mathbf{E}\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{T}\right]=\left(W^{T} Q^{-1} W\right)^{-1} \tag{13}
\end{equation*}
$$

General Minimum Variance Estimate

Suppose, as in the previous slide, that

$$
\begin{equation*}
y=W \beta+\epsilon \tag{14}
\end{equation*}
$$

y is the measured quantity, β are the underlying systm parameters, and

$$
\begin{align*}
\operatorname{Cov}\left[\epsilon \epsilon^{T}\right] & =Q \tag{15}\\
\operatorname{Cov}\left[y y^{T}\right] & =P \tag{16}
\end{align*}
$$

e.g, there is errors in y. The minimum variance unbiased estimate is

$$
\begin{equation*}
\hat{\beta}=\left(P^{-1}+W^{\top} Q^{-1} W\right)^{-1} W^{\top} Q^{-1} y \tag{17}
\end{equation*}
$$

Maximum likelihood estimates

Another approach to finding estimates - choose estimate \hat{x} that is the most likely
Steps:
(1) 1. Write the probability distribution function for x.
(2) 2. Maximize the probability distribution function
(3) \rightarrow the Maximizer is the ML estimate

Example

Given two measurements, m_{1} and m_{2} of m, each with independent Gaussian measurement errors, σ_{1} and σ_{2}, find the maximum likelihood estimate \hat{m}.

Solution

The pdf of m_{1} and m_{2} is given by:

$$
\begin{equation*}
p(m)=\prod_{i} \frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{1}{2 \sigma_{i}^{2}}\left(m_{i}-m\right)^{2}\right) \tag{18}
\end{equation*}
$$

Taking the log yields:

$$
\begin{equation*}
p(m)=-\sum_{i}\left(\log \left(\sigma_{i} \sqrt{2 \pi}\right)\right)+\sum_{i}\left(-\frac{1}{2 \sigma_{i}^{2}}\left(m_{i}-m\right)^{2}\right) \tag{20}
\end{equation*}
$$

Example contd

The ML estimate is the value of m that maximizes:

$$
\begin{equation*}
p(m)=-\sum_{i} \log \left(\sigma_{i} \sqrt{2 \pi}\right)+\sum_{i}\left(-\frac{1}{2 \sigma_{i}^{2}}\left(m_{i}-m\right)^{2}\right) \tag{22}
\end{equation*}
$$

Differentiating with respect to m gives:

$$
\begin{equation*}
\frac{1}{\sigma_{1}^{2}}\left(m_{1}-m\right)+\frac{1}{\sigma_{2}^{2}}\left(m_{2}-m\right)=0 \tag{23}
\end{equation*}
$$

and that

$$
\begin{equation*}
\hat{m}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} m_{1}+\frac{\sigma_{2}^{1}}{\sigma_{1}^{2}+\sigma_{2}^{2}} m_{2} \tag{24}
\end{equation*}
$$

This is equivalent to the minimum variance estimate.

