

SPIE'11 Review

Rani S. Ghaida

Decomposition-Aware Standard Cell Design Flows to Enable DPT (IBM)

Year of Volume Ramp (Technology Node)

• DPT unavoidable below 80nm pitch

Design-Flow Components Affected by DPT

DP Decomposition and Issues

- Need DP decomposition that will eliminate layout legalization inefficiency
 - Decomposition for easy-to-fix conflicts (work in progress)

DP Placement – Extreme approaches

no abutment rules:

conflicts avoided with smart placement

full set of abutment rules:

arbitrary placement guaranteed to be clean

15% area overhead with 50% logic-cell util

DP Placement – Hybrid Approaches

horizontal boundaries fixed, vertical boundaries free, permanent colors:

horizontal boundaries fixed, vertical boundaries constrained, temporary colors:

conflicts avoided with smart placement

As low as 2-3% area overhead

arbitrary placement guaranteed to be colorable with selective color reversal

Some infeasible cells, need large cell-height

- 1. Only worry about conflicts at vertical boundary, by either filler cells or flipping color (if possible)
- 2. Power pre-assigned, cell right forced to one color, flippable color w.r.t. power
 - Post-placement coloring or have two versions for each cell and placer chooses

- Typical iterative optimization involving cycles of coloring, checking, locally re-routing, re-coloring, and re-checking.
- *"To avoid additional routing complexity from DPT, initial design flows will prevent routers from sharing wiring levels that are used predominantly in the cell level design." (also with globalfoundries)*
 - Eliminates DPT specific cell-to-router issues
 - May not be a long term solution

SADP Friendly Detailed Routing (Mentor)

RMT bits

- Routing variable (R):
 - 1 → already occupied and routing blockage grids
- Mandrel-blocked variable (M):
 - 1 \rightarrow conflicting on mandrel
- Trim-blocked variable (T):
 - 1 \rightarrow conflicting on trim

Some Details

- Protective grid: trim grids that can provide assist spacer if filled with mandrel
- Bare grid: occupied trim grid is bare if its protective grids are "don't cares"
 - Assign to trim or mandrel?
- Calculate hesitation parameters for each grid (likelihood)
- Heuristic to find path with best cost for each net (min WL, WL on each mask)

Design	Area	Nets	Router	Wirelength	SADP statistics (nm)				Runtime	Ra	tio
2 00.8.	(μm^2)	1.005	100 4001	(nm)	M	PT	BT	Failure	(sec.)	BT	time
d1	410.292	672	blind-DR	8352	5344	984	1448	576	30.2	0.33	1.59
ui	410.292	012	SADP-DR	8416	3584	4320	512	96	48.3	0.55	1.59
d2	5581.594	10891	blind-DR	43713	21729	5632	10208	61444	1523.88	0.3	1.65
			SADP-DR	44512	20416	20544	3552	1024	2517.9		

Table 2: Performance comparison between SADP-blind approach and SADP-DR

Double Patterning Compliant Logic

Design (Globalfoundries, cadence, AM)

	Litho-Et	tch-Litho-Etch	Sidewall Spacer SADP			
Begin	TiN Metal Har	rdmask	Begin	TiN Metal Hardmask		
2	Scanner	ASML 1950i NXT	2	Scanner	ASML 1900i	
7	Scanner	ASML 1950i NXT	4	Spacer Dep	PE-ALD on SOC	
End	Queued for Via litho		8	Scanner	ASML 1900i	
			End	Queued for Via litho		

- 1900i cheaper less overlay accuracy
- 1950i slightly better throughput \rightarrow almost same cost
- Spacer deposition \rightarrow \$14-\$22 more per 12" wafer for 4 metal layers
 - Need 0.5%-1% less die area for same overall cost