

Quasi-Monte Carlo

David Fengyu Ke, Santiago Mok, and John Lee

Overview

- Why Monte Carlo anyways?
- Quasi-Monte Carlo and low discrepancy
- When to use Quasi-Monte Carlo
- Example
- Generating Halton sequences

Why Monte Carlo?

- Traditional numerical integration uses regular grids to maximize accuracy:
 - Example:

Why Monte Carlo?

- Traditional numerical integration has trouble in high dimensions the grids do not scale well:
 - Example:

$$\int_{x\in[0,1]^n} e^{Ax} dx$$

- Picking uniform points in the hypercube:
 - In 1 dimension (n=1), pick 5 uniform points
 - In 2 dimensions (n=2), pick 5^2 = 25 points
 - In 5 dimensions (n=5), pick 5^5 = 3125 points?!

Integration is difficult to do for n > 4 !

Why Monte Carlo?

Monte Carlo estimates the integral using samples:
– Example:

$$\int_{x \in [0,1]^n} e^{Ax} dx \approx \sum_{i=1}^N e^{Ax_i}$$

• Use random samples x_i to estimate the integral

Accuracy is independent of the dimension!

Accuracy
$$\propto \frac{1}{\sqrt{N}}$$

Quasi-Monte Carlo

- Combines the best parts of traditional numerical integration with best parts of Monte-Carlo
 - Regularity of traditional numerical integration
 - Points are more regular than monte-carlo points
 - Accuracy that is independent of dimension
 - Don't need a ton of grid points to get accurate results*
- Accuracy is enhanced: Accuracy $\propto \frac{1}{N}$

Quasi-Monte Carlo: How?

- Uses low discrepancy:
 - Increases the regularity of monte-carlo
 - Less 'clumping', 'whitespaces' -> less discrepancy

Example: Estimating Wafer Profit

Example: Estimating Wafer Profit

Calculated Average Profit (tens of thousands of dollars) Dimensions: 2368

		5	10	15	20	25	30	35	40	45	50	10000
	MC	1.5430	1.5385	1.5375	1.5420	1.5419	1.5400	1.5411	1.5402	1.5403	1.5405	1.5405
	QMC	1.5360	1.5361	1.5368	1.5373	1.5376	1.5381	1.5387	1.5391	1.5396	1.5401	1.7170

Percentage Error (%) Dimensions: 2368

	5	10	15	20	25	30	35	40	45	50	10000
MC	0.1623	0.1298	0.1947	0.0974	0.0909	0.0325	0.0389	0.0195	0.0130	0	0
QMC	13.844	9.9555	8.0301	6.0237	5.2881	4.0893	3.1108	2.4045	2.1099	1.5655	0

QMC performs worse than MC!

Why does QMC perform worse?

 Quasi-Monte Carlo suffers from the same problem as conventional integration: a minimum number of samples is needed to fill the space

10

- The number of samples is proportional to 2ⁿ
 - For 1 dimension, approx 2 points
 - For 5 dimensions, approx 32 points
 - For 2000 dimensions, approx ∞ points

Example QMC vs. MC

In 25 dimensions, QMC is more accurate for 300+ samples

Another pitfall – generating the correct dimension

- Cannot create higher dimension QMC sequences using lower dimension QMC sequences
 - Unlike pseudo-random
- What happens:

Generating Halton Sequences

- Halton sequences are a type of low discrepancy sequence used for QMC
- Every Halton sequence, regardless of dimension, use prime number(s) for its base(s) (Halton1958)

Generating Halton Sequences

• Express any integer n as the sum of the successive powers of radix R. That is,

- $n = n_M n_{M-1} \dots n_2 n_1 n_0 = n_0 + n_1 R + n_2 R^2 + \dots + n_M R^M$, where $M = [log_R n]$

• a new fraction, *f*, between 0 and 1, is formed when all the powers of the radix are changed with their respective inverses. That is,

 $- f = f_{R}(n) = 0.n_{0} n_{1} n_{2}...n_{M} n_{M-1} = n_{0} R^{-1} + n_{1}R^{-2} + n_{2}R^{-3} + ... + n_{M}R^{-M-1}$

- To generate N numbers in K dimensions, use the kdimensional space
 - (n/N, $f_{R1}(n)$, $f_{R2}(n)$, ..., $f_{RK-1}(n)$),
 - where n = 1, 2, ..., N and R₁, R₂, ..., R_{k-1} are the first k-1 primes.