Spintronics -Magnetoresistive RAM

5/19 Tuck Boon Chan

Introduction

- Spintronics
 - Manipulate spin of a particle (in contrast to charge)
 - Each electron spins along an axis
- Ferromagnetic material (FM)
 - Metal which "keeps" magnetic direction

Normal FM

Under magnetic field

After removing magnetic field

Ferromagnetic material (FM)

- Polarize electron spin (source)
 - Current/electron flows through FM will be aligned

- Store spin direction (memory)
 - Use FM to record information

Magnetic Tunneling Junction (MTJ)

- First discovered in 1970s
- 2 layers of FM separated by a thin layer of nonmagnetic barrier
- Directions of FM
 - Parallel : low resistance
 - Anti-parallel : Hi resistance

IEEE spectrum Sept. 2001

MTJ-based Memory Structure

• Spin direction of free layer indicates '0' of '1'

IEEE Trans. On Electron Devices, 2007

Writing 'spin'

- Field writing:
 - Apply current flowing through bit line and word line
 - Generates magnetic field and changes direction of free layer
- Spin polarized current can exert torque on magnetization
 - Torque per unit area
 is proportional to injected
 current

Writing 'C

Trend

ITRS Roadmap

- Field writing is inversely proportional to junction size
- Current induced writing is scalable

Quality metrics

Tunnel Magneto-Resistance (TMR)

Spin Ram

- Comparable speed
- No static power
- Need to have high magneto resistance ratio

		CMOS	TMR-based
Delay (ns)		0.69	0.61
Power (µW)	Dynamic	275	193
	Static	16.2	0
# of transistors		5	1
(MR ratio: 1000			R ratio: 1000%

More on current writing

- Stable over many cycles
- Dominant factor: pulse width => speed

Logic gate?

- TMR/CMOS style
 - Need CMOS
 because the gain of
 TMR is not sufficient
 to drive the next stage

	CMOS	TMR-based
Delay	310ps	310ps
Device	40Tr.	24Tr.+2C
counts		
Dynamic power	51µW	16µW
Static power	55nW	0.084nW

(0.18µm TMR/CMOS, VDD=1.8V)

Min Resistance=60 Max resistance=90k

Advantages

- Low power
- Compact (if control circuit is minimized)
- Fast and non-volatile

Challenge/variations

- Temperature fluctuation causes electron scattering and resistance variation
- Uniformity of barrier
- Magnetic intensity difference

References

- "The Quest for the Spin Transistor" IEEE spectrum Sept. 2001.
- "The emergence of spin electronics in data storage" Nature, vol. 6, Nov. 2007.
- "Magnetic Tunnel Junctions for Spintronic Memories and Beyond" IEEE Trans. On Electron Devices, vol. 54, no. 5, May 2007.
- "Dynamic current mode logic (DyCML): A new low-power high-performance logic style," *IEEE JSSCC, vol. 36, no. 3, Mar. 2001.*