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WHAT IS DP?

• Dynamic Programming  (DP) is a commonly used method of optimally 
solving complex problems by breaking them down into simpler problems.

• Dynamic programming is both a mathematical optimization method and a 
computer programming method. It is applicable to both discrete and 
continuous domains.

• Richard Bellman pioneered the systematic study of dynamic programming 
in the 1950s.

Popular problems/applications that use DP (not an exhaustive list):

 Knapsack (0/1, integer)
 Shortest path on a DAG 
 Matrix Chain multiplication problem
 Longest common subsequence
 VLSI CAD problems, e.g., Gate sizing, Placement, Routing etc.
 Queuing theory, Control theory, Bioinformatics, Information theory, Operations Research etc.
 Multiple-class Mean Value Analysis (MVA) etc.



CHARACTERISTICS OF DP

• DP is applicable to problems that exhibit the properties of overlapping subproblems which 
are only slightly smaller and optimal substructure.

• Optimal substructure ( Shortest path example) : 

 Let’s say we need to find the shortest distance from 

node S to node D. Predecessors of D are B and C.

To find the shortest path to D:

dist(D) = min{ dist(B)+1,  dist(C)+3}

dist(B) = dist(A) + 6

dist(C) = dist(S) + 2

dist(A) = min{ dist(S)+1, dist(C)+4}

 If the shortest path involves to D involves the path from S to D has the node C, then the 

shortest path from S to C and shortest path from C to D are the optimal subsolutions of  

the actual problem.



CHARACTERISTICS OF DP (Contd.)

• Overlapping subproblems (Fibonacci series example) :

Fibonacci series 0, 1, 1, 2, 3, 5, 8 …

• A naive implementation of finding nth Fibonacci number is :
Function fib(n)

if n =0 return 0

else if n =1 return 1

else     return fib(n-1) + fib (n-2)

But this involves repeated calculations – for higher numbers it leads to exponential time!!!
Eg. Fib(4) = fib(3) + fib(2), fib(3) = fib(2) + fib(1)

• Bottom-up approach of DP: Memorize and use solutions of previously solved subproblems

Function fib(n)

var previousFib := 0, currentFib := 1

if n =0 return 0

else if n = 1 return 1

repeat n-1 times

var newFib := previousFib + currentFib

previousFib := currentFib

currentFib := newFib

return currentFib

Example: fib(42) = fib(41) + fib(40) 

• O(n) is the time complexity and O(1) is space complexity, compared to exponential complexity of naïve method.



EXAMPLE 1 – OPTIMAL MATRIX MULTIPLICATION ORDER

• Determine the optimal order of A x B x C x D

• An optimal multiplication order can reduce the computations by 

orders of magnitude.

• General problem: A1 x A2 x A3 x … x An

Subproblems : Ai x Ai+1 x … Aj , 1<= I <= j <= n

Define C(i,j) = minimum cost of multiplying Ai x Ai+1 x … Aj

Solve a subproblem by the splitting into two pieces Ai x … x Ak , Ak+1 x … x Aj for i<= k < j

The cost of the subproblem is the cost of these two pieces and the cost of combining them C(i,k) + C(j,k) + mi-1*mk*mj

For every subproblem we just need to find splitting point k such that

The pseudo code:

The complexity of O(n3). The optimal order is obtained by tracing back the values of k for each subproblem.



• Mathematical Optimization – 0/1 Knapsack problem.

• Given n objects and a “knapsack”.

• Item I weights wi > 0 Kgs and has value vi > 0.

• Knapsack has capacity of W Kgs.

• Goal: fill knapsack so as to maximize its total value.

• OPT(i,w) = max profit subset of items 1…i with weight limit w

EXAMPLE 2 – 0/1 KNAPSACK PROBLEM

Pseudo Code to build the table:

This is a pseudo-polynomial time algorithm with complexity O(n*W)



EXAMPLE 3 – OPTIMAL SIZING OF AN INVERTER CHAIN

• Optimally gate sizing an inverter chain for a given timing constraint using 
DP.

E.g. problem: Minimize power for Dmax = 8

• Simple enumeration 
will take O(kN)

• Time complexity in 
this case is O(k*B*N) 
for k gate sizes, delay 
budget of B and N 
number of inverters in 
the chain.



DISADVANTAGES OF DP

• “Curse of dimensionality” – Richard Bellman:

• Runtime is strongly dependent on the range of state variable ( example 
the weight capacity W of the knapsack), so we cannot guarantee bounds 
on the runtime.

• Problems involving fractional state variable values can lead exponential 
increase in the iterations (time complexity).

• The storage space (space complexity) is strongly dependent on the state 
variable and can also be .

• Is only applicable to problems with identified overlapping subproblems 
and optimal substructures. Many problems use using dynamic 
programming locally to solve the larger problem.

• Establishing/identifying the optimal substructure and the DP recursion is 
not a trivial task for large problems.
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