
A BRIEF INTRODUCTION
TO

DYNAMIC PROGRAMMING (DP)

by

Amarnath Kasibhatla

Nanocad Lab

University of California, Los Angeles

04/21/2010

Overview

• What is DP?

• Characteristics of DP

• Formulation

• Examples

• Disadvantages of DP

• References

WHAT IS DP?

• Dynamic Programming (DP) is a commonly used method of optimally
solving complex problems by breaking them down into simpler problems.

• Dynamic programming is both a mathematical optimization method and a
computer programming method. It is applicable to both discrete and
continuous domains.

• Richard Bellman pioneered the systematic study of dynamic programming
in the 1950s.

Popular problems/applications that use DP (not an exhaustive list):

 Knapsack (0/1, integer)
 Shortest path on a DAG
 Matrix Chain multiplication problem
 Longest common subsequence
 VLSI CAD problems, e.g., Gate sizing, Placement, Routing etc.
 Queuing theory, Control theory, Bioinformatics, Information theory, Operations Research etc.
 Multiple-class Mean Value Analysis (MVA) etc.

CHARACTERISTICS OF DP

• DP is applicable to problems that exhibit the properties of overlapping subproblems which
are only slightly smaller and optimal substructure.

• Optimal substructure (Shortest path example) :

 Let’s say we need to find the shortest distance from

node S to node D. Predecessors of D are B and C.

To find the shortest path to D:

dist(D) = min{ dist(B)+1, dist(C)+3}

dist(B) = dist(A) + 6

dist(C) = dist(S) + 2

dist(A) = min{ dist(S)+1, dist(C)+4}

 If the shortest path involves to D involves the path from S to D has the node C, then the

shortest path from S to C and shortest path from C to D are the optimal subsolutions of

the actual problem.

CHARACTERISTICS OF DP (Contd.)

• Overlapping subproblems (Fibonacci series example) :

Fibonacci series 0, 1, 1, 2, 3, 5, 8 …

• A naive implementation of finding nth Fibonacci number is :
Function fib(n)

if n =0 return 0

else if n =1 return 1

else return fib(n-1) + fib (n-2)

But this involves repeated calculations – for higher numbers it leads to exponential time!!!
Eg. Fib(4) = fib(3) + fib(2), fib(3) = fib(2) + fib(1)

• Bottom-up approach of DP: Memorize and use solutions of previously solved subproblems

Function fib(n)

var previousFib := 0, currentFib := 1

if n =0 return 0

else if n = 1 return 1

repeat n-1 times

var newFib := previousFib + currentFib

previousFib := currentFib

currentFib := newFib

return currentFib

Example: fib(42) = fib(41) + fib(40)

• O(n) is the time complexity and O(1) is space complexity, compared to exponential complexity of naïve method.

EXAMPLE 1 – OPTIMAL MATRIX MULTIPLICATION ORDER

• Determine the optimal order of A x B x C x D

• An optimal multiplication order can reduce the computations by

orders of magnitude.

• General problem: A1 x A2 x A3 x … x An

Subproblems : Ai x Ai+1 x … Aj , 1<= I <= j <= n

Define C(i,j) = minimum cost of multiplying Ai x Ai+1 x … Aj

Solve a subproblem by the splitting into two pieces Ai x … x Ak , Ak+1 x … x Aj for i<= k < j

The cost of the subproblem is the cost of these two pieces and the cost of combining them C(i,k) + C(j,k) + mi-1*mk*mj

For every subproblem we just need to find splitting point k such that

The pseudo code:

The complexity of O(n3). The optimal order is obtained by tracing back the values of k for each subproblem.

• Mathematical Optimization – 0/1 Knapsack problem.

• Given n objects and a “knapsack”.

• Item I weights wi > 0 Kgs and has value vi > 0.

• Knapsack has capacity of W Kgs.

• Goal: fill knapsack so as to maximize its total value.

• OPT(i,w) = max profit subset of items 1…i with weight limit w

EXAMPLE 2 – 0/1 KNAPSACK PROBLEM

Pseudo Code to build the table:

This is a pseudo-polynomial time algorithm with complexity O(n*W)

EXAMPLE 3 – OPTIMAL SIZING OF AN INVERTER CHAIN

• Optimally gate sizing an inverter chain for a given timing constraint using
DP.

E.g. problem: Minimize power for Dmax = 8

• Simple enumeration
will take O(kN)

• Time complexity in
this case is O(k*B*N)
for k gate sizes, delay
budget of B and N
number of inverters in
the chain.

DISADVANTAGES OF DP

• “Curse of dimensionality” – Richard Bellman:

• Runtime is strongly dependent on the range of state variable (example
the weight capacity W of the knapsack), so we cannot guarantee bounds
on the runtime.

• Problems involving fractional state variable values can lead exponential
increase in the iterations (time complexity).

• The storage space (space complexity) is strongly dependent on the state
variable and can also be .

• Is only applicable to problems with identified overlapping subproblems
and optimal substructures. Many problems use using dynamic
programming locally to solve the larger problem.

• Establishing/identifying the optimal substructure and the DP recursion is
not a trivial task for large problems.

REFERENCES

• R. Bellman, Dynamic Programming. Dover Publications, N.Y, 1957.

• Bellman, R. and S. Dreyfus (1962) Applied Dynamic Programming Princeton
University Press Princeton, New Jersey.

• Blackwell, D. (1962) Discrete Dynamic Programming. Annals of Mathematical
Statistics 33, 719-726.

• Chow, C.S. and Tsitsiklis, J.N. (1989) The Complexity of Dynamic Programming.
Journal of Complexity 5 466.488.

• Eric V. Denardo Dynamic programming: models and applications, 2003.

• www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf

• http://www2.fiu.edu/~thompsop/modeling/modeling_chapter5.pdf

• http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html

