A BRIEF INTRODUCTION
TO
DYNAMIC PROGRAMMING (DP)

by
Amarnath Kasibhatla
Nanocad Lab
University of California, Los Angeles

Overview

What is DP?
Characteristics of DP
Formulation
Examples
Disadvantages of DP
References

WHAT IS DP?

Dynamic Programming (DP) is a commonly used method of optimally
solving complex problems by breaking them down into simpler problems.

Dynamic programming is both a mathematical optimization method and a
computer programming method. It is applicable to both discrete and
continuous domains.

Richard Bellman pioneered the systematic study of dynamic programming
in the 1950s.

Popular problems/applications that use DP (not an exhaustive list):

YVVVVVVYY

Knapsack (0/1, integer)

Shortest path on a DAG

Matrix Chain multiplication problem

Longest common subsequence

VLSI CAD problems, e.g., Gate sizing, Placement, Routing etc.

Queuing theory, Control theory, Bioinformatics, Information theory, Operations Research etc.
Multiple-class Mean Value Analysis (MVA) etc.

CHARACTERISTICS OF DP

DP is applicable to problems that exhibit the properties of overlapping subproblems which

are only slightly smaller and optimal substructure.

Optimal substructure (Shortest path example) :

» Let’s say we need to find the shortest distance from Py B Pl
node S to node D. Predecessors of D are B and C. 1 Ny I"MB,/'I\\\:E
To find the shortest path to D: .f_____{,,f’ x\y’"\.
S 1 I :
I‘xb./l 4 L
dist(D) = min{ dist(B)+1, dist(C)+3} S A 1
dist(B) = dist(A) + 6 .:'/ v 3 g *
dist(C) = dist(S) + 2 N R
dist(A) = min{ dist(S)+1, dist(C)+4} q
initialize all dist[-] values to o0 T _ “a.\

: T L ..—.h{"i — o 3,.—,,\
distis) =0 . (sH=(c (A ~(B"+~D)
for each ve€ V\{s}, in linearized order: R e Nl N

dist(v) = ming, ,ep{dist(u) + l(u, v)} T e

» If the shortest path involves to D involves the path from S to D has the node C, then the
shortest path from S to C and shortest path from C to D are the optimal subsolutions of

the actual problem.

CHARACTERISTICS OF DP (Contd.)

* Overlapping subproblems (Fibonacci series example) -

Fibonacci series 0, 1,1, 2, 3,5, 8 ...

* A naive implementation of finding nt" Fibonacci number is :
Function fib(n)
if n =0 return 0
else if n =1 return 1
else return fib(n-1) + fib (n-2)

But this involves repeated calculations — for higher numbers it leads to exponential time!!!
Eg. Fib(4) = fib(3) + fib(2), fib(3) = fib(2) + fib(1)

 Bottom-up approach of DP: Memorize and use solutions of previously solved subproblems

Function fib(n)
var previousFib := 0, currentFib :=
if n =0 return 0
else if n=1return 1
repeat n-1 times
var newfFib := previousFib + currentFib
previousFib := currentFib
currentFib := newFib
return currentFib

Example: fib(42) = fib(41) + fib(40)

. O(n) is the time complexity and O(1) is space complexity, compared to exponential complexity of naive method.

EXAMPLE 1 - OPTIMAL MATRIX MULTIPLICATION ORDER

. Determine the optimal orderof AxBxCxD
. An optimal multiplication order can reduce the computations by ® |] ¥ /3 ¥
orders of magnitude.

A B i D
. General problem: A, x A, x A; X . X A 0x2 Wx1 1x10 10 % 100
Parenthesization | Cost computation | Cost

Subproblems: A x A,y x ... A, I<=I<=j<=n A% (BxC) D)

(Ax (BxC))yx D
Define C(i,j) = minimum cost of multiplying A;x A,,; x ... A, (Ax B) = (CxD)

20-1-10+20-10- 100 4 50-20 - 100 | 120,200
20-1-10+50-20-10+50-10-100 | 60,200
50-20-1+1-10-100+50-1-100 7,000

Solve a subproblem by the splitting into two pieces A; x ... x Ay, Ay, X ... x A fori<= k <
The cost of the subproblem is the cost of these two pieces and the cost of combining them C(i,k) + C(j,k) + m_;*m,*m;
For every subproblem we just need to find splitting point k such that

C(i,j) = min {C(i, k) + C(k+1,7) + mi_1 - my - m;}

ik

The pseudo code:

for s=1 to n—1:
for i=1 to n—s:
j=1+s
C(i,7) = min{C(i, k) + C(k + 1,5) + mi_y -mg -m; 11 < k < j}
return C(1,n)

The complexity of O(n3). The optimal order is obtained by tracing back the values of k for each subproblem.

EXAMPLE 2 - 0/1 KNAPSACK PROBLEM

* Mathematical Optimization — 0/1 Knapsack problem.
* Given n objects and a “knapsack”.
* Item | weights w; >0 Kgs and has value v; > 0.

* Knapsack has capacity of W Kgs.

* Goal: fill knapsack so as to maximize its total value. - L :
¢ 6 P
. 3 IB 5
* OPT(i,w) = max profit subset of items 1...i with weight limit w 4 52 6
0 £iz0 k) 28 T

OPTG, w)=10PT(i-1,w) if w,>w

max{ OPT(i—-1,w), v,+ OPT(i-1,w—w;)} otherwise

Pseudo Code to build the table:

e ¢ 00 o 0 o 0o 0 0 0 0 0 O
M[0, w] =0 {1} - 1 1 1 1 1 1 1 1 1 1 1
fri-lton (Ley P 1 6 7 7 7T 7T 7T 7T 7 7T 7
iF e >w 23y o 1 6 7 7 [8l 19 24 25 25 25 25
e TR (L2,34y 0 1 6 7 7 18 22 24 28 29 29 40
MR e L e e MR e (12,3,45) 0 1 6 7 7 18 22 28 29 34 34 |40

return M[n, W]

This is a pseudo-polynomial time algorithm with complexity O(n*W)

EXAMPLE 3 — OPTIMAL SIZING OF AN INVERTER CHAIN

* Optimally gate sizing an inverter chain for a given timing constraint using

DP.

E.g. problem: Minimize power for D, = 8

D D D

NUMERICAL EXAMPLE FOR A THREE-STAGE INVERTER CHAIN . THE FINAL OPTIMAL
SIZING SOLUTION IS SHOWN IN bold FONT

* Simple enumeration
will take O(kN)

* Time complexity in
this case is O(k*B*N)
for k gate sizes, delay
budget of Band N
number of inverters in
the chain.

DELAY TABLE FOR THE INVERTER ASSUMED IN NUMERICAL EXAMPLE

[nput Leakage Delay

cap power Load cap 3 Load cap 6
Size 1 3 5 3 El
Size 2 6 10 I 2

Cutput Stage |1 Slage ! Slape 3

Cap Budmet _F LIS Hudmet _F [Hudeel [N L
3 1 10 | 2 3 20) 2
3 2 10 2 4 15 1
K] i 3 1 3 13 2
3 |) | i i 1
K] 3 3 1 i 1 1
3 & 3 | E i 1
A i 3 1
K] 3 1
& 2 10 2 4 20) 2 3 20 1
o i A 2] (&) 1
i) -+ i) 1 [i] |] 2
o 3 3 ! il 1
i) i} i & il 1
o i 3
o "]

DISADVANTAGES OF DP

“Curse of dimensionality” — Richard Bellman:

Runtime is strongly dependent on the range of state variable (example
the weight capacity W of the knapsack), so we cannot guarantee bounds
on the runtime.

Problems involving fractional state variable values can lead exponential
increase in the iterations (time complexity).

The storage space (space complexity) is strongly dependent on the state
variable and can also be .

Is only applicable to problems with identified overlapping subproblems
and optimal substructures. Many problems use using dynamic
programming locally to solve the larger problem.

Establishing/identifying the optimal substructure and the DP recursion is
not a trivial task for large problems.

REFERENCES

R. Bellman, Dynamic Programming. Dover Publications, N.Y, 1957.

Bellman, R. and S. Dreyfus (1962) Applied Dynamic Programming Princeton
University Press Princeton, New Jersey.

Blackwell, D. (1962) Discrete Dynamic Programming. Annals of Mathematical
Statistics 33, 719-726.

Chow, C.S. and Tsitsiklis, J.N. (1989) The Complexity of Dynamic Programming.
Journal of Complexity 5 466.488.

Eric V. Denardo Dynamic programming: models and applications, 2003.
www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf
http.//www2.fiu.edu/~thompsop/modeling/modeling_chapter5.pdf
http://mat.gsia.cmu.edu/classes/dynamic/dynamic.htm|

