A BRIEF INTRODUCTION TO DYNAMIC PROGRAMMING (DP)

by Amarnath Kasibhatla Nanocad Lab University of California, Los Angeles 04/21/2010

Overview

- What is DP?
- Characteristics of DP
- Formulation
- Examples
- Disadvantages of DP
- References

WHAT IS DP?

- *Dynamic Programming* (DP) is a commonly used method of optimally solving complex problems by breaking them down into simpler problems.
- Dynamic programming is both a mathematical optimization method and a computer programming method. It is applicable to both discrete and continuous domains.
- Richard Bellman pioneered the systematic study of dynamic programming in the 1950s.

Popular problems/applications that use DP (not an exhaustive list):

- Knapsack (0/1, integer)
- Shortest path on a DAG
- Matrix Chain multiplication problem
- Longest common subsequence
- *VLSI CAD problems, e.g., Gate sizing, Placement, Routing etc.*
- > Queuing theory, Control theory, Bioinformatics, Information theory, Operations Research etc.
- Multiple-class Mean Value Analysis (MVA) etc.

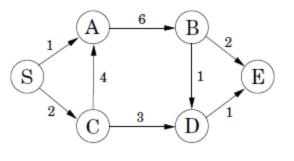
CHARACTERISTICS OF DP

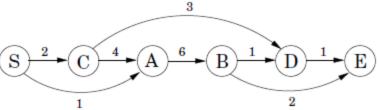
- DP is applicable to problems that exhibit the properties of overlapping subproblems which are only slightly smaller and optimal substructure.
- Optimal substructure (Shortest path example) :

```
    Let's say we need to find the shortest distance from
node S to node D. Predecessors of D are B and C.
    To find the shortest path to D:
    dist(D) = min{ dist(B)+1, dist(C)+3}
dist(B) = dist(A) + 6
dist(C) = dist(S) + 2
```

```
dist(A) = min{ dist(S)+1, dist(C)+4}
initialize all dist(\cdot) values to \infty
```

```
\begin{array}{l} \operatorname{dist}(s) = 0 \\ \operatorname{for \ each} \ v \in V \backslash \{s\}, \ \operatorname{in \ linearized \ order:} \\ \operatorname{dist}(v) = \min_{(u,v) \in E} \{\operatorname{dist}(u) + l(u,v)\} \end{array}
```





> If the shortest path involves to D involves the path from S to D has the node C, then the shortest path from S to C and shortest path from C to D are the optimal subsolutions of the actual problem.

CHARACTERISTICS OF DP (Contd.)

• Overlapping subproblems (Fibonacci series example) :

Fibonacci series 0, 1, 1, 2, 3, 5, 8 ...

• A naive implementation of finding nth Fibonacci number is :

Function fib(n) if n =0 return 0 else if n =1 return 1 else return fib(n-1) + fib (n-2)

But this involves repeated calculations – for higher numbers it leads to exponential time!!! Eg. Fib(4) = fib(3) + fib(2), fib(3) = fib(2) + fib(1)

• Bottom-up approach of DP: Memorize and use solutions of previously solved subproblems

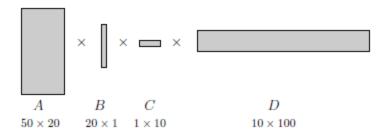
Function fib(n) var previousFib := 0, currentFib := 1 if n =0 return 0 else if n = 1 return 1 repeat n-1 times var newFib := previousFib + currentFib previousFib := currentFib currentFib := newFib return currentFib

Example: fib(42) = fib(41) + fib(40)

• *O(n) is the time complexity and O(1) is space complexity, compared to exponential complexity of naïve method.*

EXAMPLE 1 – OPTIMAL MATRIX MULTIPLICATION ORDER

- Determine the optimal order of A x B x C x D
- An optimal multiplication order can reduce the computations by orders of magnitude.



• General problem: A₁ x A₂ x A₃ x ... x A_n

Subproblems : $A_i x A_{i+1} x ... A_i$, $1 \le l \le j \le n$

Define C(i,j) = minimum cost of multiplying $A_i x A_{i+1} x \dots A_j$

 $\begin{array}{|c|c|c|c|c|c|} \hline Parenthesization & Cost \ computation & Cost \\ \hline A \times ((B \times C) \times D) & 20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100 & 120, 200 \\ \hline (A \times (B \times C)) \times D & 20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100 & 60, 200 \\ \hline (A \times B) \times (C \times D) & 50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100 & 7, 000 \\ \hline \end{array}$

Solve a subproblem by the splitting into two pieces $A_i x \dots x A_k$, $A_{k+1} x \dots x A_j$ for i <= k < jThe cost of the subproblem is the cost of these two pieces and the cost of combining them $C(i,k) + C(j,k) + m_{i-1} m_k m_j$ For every subproblem we just need to find splitting point **k** such that

$$C(i,j) = \min_{i \le k < j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

The pseudo code:

for
$$s = 1$$
 to $n - 1$:
for $i = 1$ to $n - s$:
 $j = i + s$
 $C(i, j) = \min\{C(i, k) + C(k + 1, j) + m_{i-1} \cdot m_k \cdot m_j : i \le k < j\}$
return $C(1, n)$

The complexity of $O(n^3)$. The optimal order is obtained by tracing back the values of k for each subproblem.

EXAMPLE 2 – 0/1 KNAPSACK PROBLEM

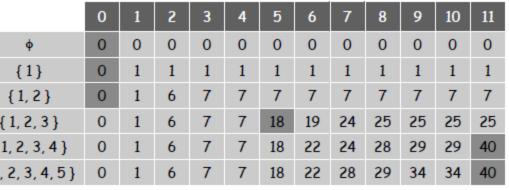
- Mathematical Optimization 0/1 Knapsack problem.
- Given n objects and a "knapsack".
- Item I weights $w_i > 0$ Kgs and has value $v_i > 0$.
- Knapsack has capacity of W Kgs.
- Goal: fill knapsack so as to maximize its total value.
- OPT(i,w) = max profit subset of items 1...i with weight limit w

 $OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1, w) & \text{if } w_i > w\\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$

Value Weight Item 1 1 1 2 6 2 3 18 5 4 22 6 5 28 7

Pseudo Code to build the table:

Input: n, $w_1, \dots, w_{N_1}, v_1, \dots, v_N$	
for $w = 0$ to W	φ
$\mathbf{M}[0, \mathbf{w}] = 0$	{1}
for $i = 1$ to n for $w = 1$ to W	{1,2}
if $(w_i > w)$	{ 1, 2, 3 }
<pre>M[i, w] = M[i-1, w] else</pre>	{ 1, 2, 3, 4
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	{1, 2, 3, 4,
return M[n, W]	



This is a pseudo-polynomial time algorithm with complexity O(n*W)

EXAMPLE 3 – OPTIMAL SIZING OF AN INVERTER CHAIN

- Optimally gate sizing an inverter chain for a given timing constraint using DP.
- *E.g. problem: Minimize power for* $D_{max} = 8$

	Input	Leakage	Delay		
	cap	power	Load cap 3	Load cap 6	
Size 1	3	5	3	4	
Size 2	6	10	1	2	

NUMERICAL EXAMPLE FOR A THREE-STAGE INVERTER CHAIN . THE FINAL OPTIMAL SIZING SOLUTION IS SHOWN IN **bold** FONT

• Simple enumeration will take O(k^N)

• Time complexity in this case is O(k*B*N) for k gate sizes, delay budget of B and N number of inverters in the chain.

Output	Stage 1			Stage 2		Stage 3			
cap	Budget	CP	OS	Budget	CP	os	Budget	СР	OS
3	1	10	2	3	20	2			
3	2	10	2	4	15	1			
3	3	5	1	5	15	2			
3	4	- 5	1	6	10	1			
3	5	5	1	7	10	1			
3	6	5	1	8	10	1			
3	7	5	1						
3	8	5	1						
6	2	10	2	4	20	2	8	20	1
6	3	10	2	5	15	1			
6	4	2	1	6	15	2			
6	5	2	1	7	10	1			
6	6	2	1	8	10	1			
6	1	5	1						
6	8	5	1						

DISADVANTAGES OF DP

- "Curse of dimensionality" Richard Bellman:
- Runtime is strongly dependent on the range of *state* variable (example the weight capacity W of the knapsack), so we cannot guarantee bounds on the runtime.
- Problems involving fractional state variable values can lead exponential increase in the iterations (time complexity).
- The storage space (space complexity) is strongly dependent on the state variable and can also be .
- Is only applicable to problems with identified overlapping subproblems and optimal substructures. Many problems use using dynamic programming locally to solve the larger problem.
- Establishing/identifying the optimal substructure and the DP recursion is not a trivial task for large problems.

REFERENCES

- R. Bellman, *Dynamic Programming*. Dover Publications, N.Y, 1957.
- Bellman, R. and S. Dreyfus (1962) *Applied Dynamic Programming Princeton University Press* Princeton, New Jersey.
- Blackwell, D. (1962) **Discrete Dynamic Programming**. Annals of Mathematical Statistics **33**, **719-726**.
- Chow, C.S. and Tsitsiklis, J.N. (1989) **The Complexity of Dynamic Programming**. *Journal of Complexity* **5 466.488.**
- Eric V. Denardo *Dynamic programming: models and applications, 2003.*
- www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf
- http://www2.fiu.edu/~thompsop/modeling/modeling_chapter5.pdf
- http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html