

Highlights on EUV from SPIE advance lithography 2010

Tuck Boon Chan, UCLA

Outline

- Updates on Extreme Ultraviolet Lithography

 Optical tool, Resists, throughput
 Defects
- EUV vs Double patterning

Optical Tool Road Map

22-16nm resolution

Solution Overview

- Resolution $\approx K (\lambda/NA)$
- Reflection efficiency reduced from 6 mirrors to 8 mirrors
 - Higher source power

Current status

• About 350 wafer per month

UCLA

Throughput

ASML "EUV into production with ASML's NXE platform

EUV source

Power	Model	2009	2010	2011	2012	2013	2014	2015
>400W	3 rd Gen.						G	6L400E
>200W	2 nd Gen.		G	L100E pm * 200M	oto GL20 / upgrade			
100W	1 st Gen.	E	TS					

Figure 14 Road map of Gigaphoton LPP EUV source

 EUV targets ~3x of an ArF scanner source power (Cymer)

Resist for EUV

	Key Item	Target for 28 nm HP	Resist A (Polymer- bound PAG)	Resist B (PHS Hybrid)	Resist C (Molecular Glass)
1-1	Resolution	28 nm	25	26	27
1-2	Resist Collapse (Useful DOF at 28 nm HP)	160 nm	40	80	0
1-3	%EL @ 28 nm HP	10 %	18	13	7
14	DOF @ 28 nm HP	160 nm	120	120	80
2	LWR (nm)	2.8 nm	3.8	4.8	5.4
3	Sensitivity (mJ/cm ²⁾	15mJ/cm ²	23.2	22.8	24.2
4	Relative Etch Resistance	A/R 2.2	70	100	68
5	MEEF	<1.4	1.29	1.33	2.11
6	ID Bias (nm)	<2.8 nm	2.4	5.9	29.2
7	CD Linearity (Average % Deviation)	<5%	1.4	3.7	9.2
8	PEB Sensitivity (nm/°C)	<1 nm/°C	1.6	0.53	0.53
9	PED Stability (nm/1hr)	<1 nm/Hr	0.6	-0.4	0.7
10	Line Slimming (After 12 sec. inspection charging)		4.1	2.7	4.2

Resolution

ASML "EUV into production with ASML's NXE platform

Defects

		Phase defect width: 100 nm				Phase defect width:65 nm			
	Mask pattern	0	0	0	0	0	•	•	0
	+75 nm								
Defocus	0 nm								
	-75 nm								

Need to consider defect size, pattern, defocus together

EUV Defect Printability (\triangle CD>10%) A B C D E F

• Minimum Programmed Defect Size Observed on the EUVL Mask

Defect Type	110 nm Half-Pitch	150 nm Half-Pitch	200 nm Half-Pitch
А	30 nm	40 nm	40 nm
В	50 nm	70 nm	80 nm
С	80 nm	80 nm	90 nm
D	$70 \mathrm{nm}$	$70 \mathrm{nm}$	$70 \mathrm{nm}$
Е	40 nm	40 nm	40 nm
F	$70 \ \mathrm{nm}$	80 nm	80 nm

GM Kloster (Intel) "Printability of extreme ultraviolet lithography mask pattern defects for 22-40 nm half-pitch features"

Effect of Dose & Exposure

- Pattern A (protusion) has minimum printable defect size
 Sensitive to doce and focus
 - Sensitive to dose and focus
- Defect aware layout / design rule

Judges Chris Progler and Donis Flagello

EUV

Cymer, Toshiba, Intel & Globa Foundaries

IBM, Nikon, IMEC & Synopsis

It's all about k1 (resolution)!

- Significant degradation in DPL at 40-nm HP
- Carl Zeiss had optical designs below 22 nm
- ASML : Single-exposure EUV has lowest cost of all options (excluding tool?)
- Toshiba roadmap :
 - 2x-nm HP node process study begin this year
 - Primary challenge
 - defectively < 0.1/cm2
 - throughput 100 wph

Intel:

- Needs to ramp up manufacturing at the 22-nm node by 2015.
- logic layouts might need 4+ masks @ 22nm.
- Intel made a zero-defect EUV reticle recently.

Global Foundaries :

• EUV can backfill to earlier technologies, while DPL cannot.

Strong demand from chip makers for EUV

Double Patterning

- Synopsis: multiple design rule and patterning options to extend into 22 nm and below
- IBM : overlay improvements will enable 193 nm DPL extension to 22 nm and beyond
- DPL is available today

Challenges:

- CD variation is critical, need error budget for other processes
- Increasing mask complexity and cost

Summary

- EUV tools improved, Yet
 - Has not fulfill sources, resists and masks requirements
- Targeted for the 16-nm node or ...
- DPL is the promising technology available now
 - Commercial tool available to solve coloring conflict
 - Overlay improved
- Alternative next generation lithography
 - E-beam
 - Nano-imprint
 - Self assembly

UCLA

Decomposition strategy for self-aligned DP

- Advantage of SADP : less overlay
- Lack of decomposition flexibility
- Need to decompose layout with minimum masks (2)

Y. Ma "Decomposition Strategies for Self-Aligned Double Patterning"

Patterning wide lines

Overlay of second mask :

Decomposition example

b. Positive Tone Decomposition

c. Negative Tone Decomposition

Decomposed Layout

On-Wafer Result

How and Where To Use?

- Mask, scanner, OPC etc limits
 - Over constraint : need to relax to allow certain structures
- Tight Process constraints

 Restrict layout patterns
- Basic rules for SADP friendly?
- Early adoption of decomposition tool ?
 - Quick iteration of change and check for layout designer