

E-Beam Direct Write

Rani S. Ghaida <u>rani@ee.ucla.edu</u>

NanoCAD Group Meeting 03/10/10

EBDW Motivation

- EUV: -- high CoO → might be suitable only for high-volume
 -- Unable to reach acceptable throughput
- Mask cost threatening the profitability of scaling
- EBDW: accurate printability and maskless!

150-180nm 130nm 90nm 65nm 45nm

% of wafer cost that mask costs represent

	250nm	130nm
ASIC	32%	56%
DRAM	7%	10%
Logic	12%	24%

Source: IC Knowledge

VSB vs. Character Projection

Source: Sugihara ISCAS'06

VSB vs. Character Projection

NanoCAD Lab Rani S. Ghaida

4

Aperture Misalignment

• CP unaffected by apertures misalignment

Source: ebeam.org

Shot Count

- Design for E-Beam
 - Co-designing the cell library and the stencil mask
 - Optimizing the physical design for CP

Throughput for Small Volume

Source: Maruyama EIPBN'09

Limited Character Size

- Electrons in an e-beam repel each other
- As an e-beam becomes larger, printed image gets more blurred
- Use close to maximum allowed e-beam

Limited Number of Characters

Previous specification of the F3000 character block with 100 characters

Up to 12 character blocks

The Packed Stencil allows, for example, this packed layout of 220-280 characters Up to 20 character blocks

Minimizing the Number of Characters

- Common Component as a character
- One cell can be printed using multiple shots of the same base character

Mask Deflector

Block Mask

st_Slit

Minimizing the Number of Characters

- Large character is placed on a stencil
- Partial CP conversion to create smaller cells
 - Misalignment issues

NanoCAD Lab Rani S. Ghaida

Source: Maruyama EIPBN'09

Design for E-Beam

Optimize shot count at every SP&R step

14 CP shots

(Preferred)

- Allow only discrete metal widths
- Arrange some cells in one direction for less characters (e.g., SRAM)
- Avoid M1 stub routing
- Enclose via geometries completely inside standard cell pins

blocks

65nm Test Chip

Chip-A floor plan with DFEB library Chip size = 4.2mm*8.4mm

Chip-B Floor plan with original library Chip size = 4.2mm*8.4mm

142

Source: Maruyama EIPBN'09

NanoCAD Lab Rani S. Ghaida

349

Character Layouts

Diffusion (active)

Contact

: : :	: : : :	94999 4224
	:: :	

Source: Maruyama EIPBN'09

NanoCAD Lab Rani S. Ghaida

11111

515515

Area Overhead and Exposure Time

< 4% chip-area overhead

Source: Maruyama EIPBN'09

compared to VSB (20x for poly)

Future Directions

- Combine DFEB with Multi-Column Cell E-beam
 - Extension of character set
 - Throughput enhancement

Source: Maruyama EIPBN'09