

## **Simulated Annealing**

#### NANOCAD LAB

by: Santiago Mok (smok@ucla.edu)



# What is Simulated Annealing?

- Probabilistic method for finding global minimum of a cost function
- Motivation from combinatorial optimization problems

   i.e. traveling salesman problem (TSP)
- Heuristics algorithms often terminate in a local minima
- New States are characterized by a cost function:
  - Always accept new state if new cost is lower
  - State with increase in cost are accepted based on a controlling parameter (T).

#### <u>UCLA</u>

## "Hill-Climbing"



- Cost-increasing moves are allowed depending on the current state
- An algorithm that is similar to annealing in solids
  - a technique involving heating and controlled cooling of a material to increase the size of its crystal



## **Parameters**

- Initial configuration
- A transition or generation function to find a neighbor as next candidate
- A cost function
- An Evaluation Criterion  $-i.e. \quad y = \exp(-\frac{c(j) - c(i)}{T})$
- A Stop Criterion
  - i.e. value of cost function remained unchanged at the end of certain consecutive configuration



### **Temperature Parameter**

- Initial temperature<sup>1</sup>
  - Exploration of the configuration space is performed to determine " $\sigma$ "
  - k is determined by assuming a normal distribution and temperature high enough to accept with probability P a configuration whose cost is 3σ worst than current configuration

$$T_0 = k\sigma; k = -\frac{3}{\ln P}$$

- Temperature decrement<sup>2</sup>
  - Method used the so-called annealing curve, a plot of the average cost versus the log of the temperature value  $T' = T_{aver}(T\Delta c)$

1)

2)

$$T' = Texp(\frac{T\Delta c}{\sigma^2})$$

**NanoCAD Lab** Santiago Mok (smok@ucla.edu)

 S. White, "Concepts of Scale in Simulated Annealing," (1984).
 M. Huang, F. Romeo, A. Sangiovanni-Vincentelli, "An Efficient General Cooling Schedule for Simlated Annelaing," (1986).



### **Pseudo-Code**





# **Applications of Simulated Annealing**

- Combinatorial optimizations
  - Traveling Salesperson (TSP)
- Computer-aided circuit design
  - Placement and Routing
- Image Processing
- Numerical Analysis
- Among others...



## Summary

- Simulated Annealing allow hill-climbing move to avoid local minima
- The 'temperature' play a crucial role in accepting cost-increasing states
- Algorithm speed is affected by:
  - Initial temperature
  - # of configurations within each temperature
  - Temperature rate of decrease



## **Example Applet and References**

- Simulated Annealing applet of Traveling Salesperson
   <u>http://www.heatonresearch.com/articles/64/page1.html</u>
- References
  - Carl Sechen, VLSI Placement and Global Routing Using Simulated Annealing, Boston: Kluwer Academic Publisher, 1988
  - Dimitris Bertsimas and John Tsitsiklis, Simulated
     Annealing, Statistical Science, 1993, Vol. 8, No. 1, 10-15

#### Thank You for your Attention~!