Optimization in 15 minutes

John Lee lee@ee.ucla.edu

What is Optimization and Mathematical Programming?

- Optimization is any process of improving

 Optimize your writing process
 Optimize your cooking
 Optimize your PhD
- Mathematical Programming is a sub-field which deals with problems with a specific form:

minimize $f_0(x)$ subject to $f_i(x) \le 0$ $g_j(x) = 0$

Mathematical Programming

• Q: Why is everything in the form:

```
\begin{array}{ll} \text{minimize} & f_{\cdot}(x) \\ \text{subject to} & f_{i}(x) \leq \cdot \\ & g_{j}(x) = \cdot \end{array}
```

- Convenient form to see the structure of the problem
- 50 years in convention

- This form covers most design problems, except:
 Problems that require a trade-off analysis
 Multi-objective problems
 - (These problems can usually be formulated to a sequence of "minimize" "subject to" problems)

Different types of Optimization Problems

minimize $f_0(x)$ subject to $f_i(x) \le 0$ $g_j(x) = 0$

	domain	fo	fi	gi	Optimality condition
Linear Programming	Continuous, convex	linear	linear	linear	X
Geometric Programming	Continuous, convex	posynomial	posynomial	linear	X
Quadratic Programming	Continuous, Convex	Quadratic, convex	linear	linear	X
Convex Programming	Continuous, Convex	convex	convex	linear	X
Nonlinear Programming	General, connected	general	general	general	
Integer Programming	Integer	general	general	general	

Linear Programming

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & Gx = h \end{array}$

- Everything is linear above
- Easiest problem to solve (aside from unconstrained):
 - Can solve very large problems (sometimes 1 million +)
 - Simplex methods or interior point methods
- Software:
 - MATLAB linprog, CVX, lp_solve (for large problems)

Quadratic Programming

minimize $x^T A^T A x + b^T x$ minimize $\|Ax - b\|^2$ subject to $Gx \leq h$ subject to $Gx \leq h$

- Can solve large designs
- Most cases are from fitting problems
 - Fitting data (||Ax-b||^2 is a measure of error)
 - Optimal sensor locations
- Software:
 - CPLEX, LOQO, Mosek, Matlab fmincon

Geometric Programming

minimize $f_0(x)$ subject to $f_i(x) \le 1$ $x \ge 0$

• *fo* and *fi* are posynomials:

$$f(x) = \sum_{k} c_{k} \prod_{j} x_{j}^{\alpha_{jk}}, \quad c_{k} > 0, \quad \alpha_{jk} \in \mathbb{R}$$

- A change of variables $x = e^{y}$ makes the problem a convex optimization problem
- Software:

- CVX, GGPLab, Mosek,

Examples of Posynomials

- Gate delay: $D_i(x) = x_i^{-1} \sum_{j \in fo(i)} x_j$
- Area: A(w, l, h) = wlh

• Opamp currents:
$$I_7 = \frac{W_5 L_8}{L_5 W_8} \implies \begin{cases} W_5 L_8 L_5^{-1} W_8^{-1} I_7^{-1} \le 1 \\ W_5^{-1} L_8^{-1} L_5 W_8 I_7 \le 1 \end{cases}$$

- Opamp, biases, communications theory, wire-sizing
 - see Boyd et. al, A Tutorial on Geometric Programming, Hershenson & Boyd, etc.

Integer / Discrete Programming

minimize $f_{\circ}(x)$ subject to $f_{i}(x) \leq S$ $x \in \{\circ, S, 2, \circ ...\}$

- Generally very difficult to solve exactly

 NP Complete class
- Solvers use heuristics (usually not exact!):
 - Branch and Bound
 - Sequential rounding
 - -SAT
- Usually get good results, but not **optimal** results

A History of Mathematical Programming

1940. Computers emerge Dantzig invents Linear Programming (LP) and the Simplex Algorithm to solve LP

- **1960's- 1970's.** Most theoretical results and algorithms are developed
- **1979.** Khachiyan shows that LP's are polynomial time
- **1984-1990s.** Interior Point Algorithms developed (reliable algorithms for mathematical programming); Emergence of fast and affordable computers

1990's. Convex Optimization is a hot topic

2000's. Robust Optimization is a hot topic

What problems can I solve in a couple hours? (a **very** rough guide)

Exact Optimum:

Unconstrained Smooth Convex Optimization	~10-100 million		
Linear Programming	~1 million		
Convex Smooth Optimization	~10,000 variables		
Convex non-smooth	~1,000~1 million variables		
Non-convex continuous	10~1,000 variables		
Integer Programming	10~100 variables		

Approximate Solutions:

- Pretty much anything!
 - with varying degrees of success

What was not covered in this talk

- o Algorithms to perform mathematical programming
- o Modeling real world problems as a convex programming problems
- o Re-formulating problems for faster solving
- o Statistical optimization
- o Integer Programming
- o Convex analysis

References

- Convex Optimization and Interior Point Methods
 - <u>Convex Optimization</u>, Boyd, Vandenberghe
- Nonlinear Programming Algorithms
 - Numerical Optimization, Nocedal and Wright
- First-order methods and Lagrangian Methods
 - <u>Nonlinear Programming</u>, Bertsekas
- Pre-1990 Optimization
 - Introductory Lectures on Convex Optimization, Nesterov
- Geometric Programming
 - "A Tutorial on Geometric Programming", Boyd et al
- Stochastic Programming
 - "A Tutorial on Stochastic Programming", Shapiro and Philpott

References

- Geometric Programming for analog design
 - Hershenson, Boyd (assorted papers)