Introduction of Pseudo-Random Number Generator

True Random Number and Pseudo-Random Number

- True Random Number Sequence
 - Not predictable
 - Cannot predict the next number of the sequence based on the current numbers
 - Difficult to be generated using software
 - Software has only deterministic operations
 - Can be generated using hardware
 - o Based on microscopic phenomena such as thermal noise
- Pseudo-Random Number Sequence
 - Sequence of number determined by a small set of initial values
 - The number follows a certain distribution (usually uniform)
 - Predictable
 - Next number of the sequence is determined by the current state
 - Can be generated using software

Pseudo-Random Number Generation Algorithm

- Middle Square Method
 - Start from an n digit number
 - Calculate square of an n digit number, resulting a 2n digit number
 - Use the middle n digit of the 2n digit number as current number
 - Use the current n digit random number to generate next number
 - Example:

```
1^{st} 1111
2^{nd} 1111^2 = 01234321 \rightarrow 2343
3^{rd} 2343^2 = 05489649 \rightarrow 4896
```

Pseudo-Random Number Generation Algorithm Cont'd

Better algorithm

Select unsign number: IA, IM, IC

start with a current state: *current_state*

```
next\_state = cur * IA + IC
```

 $t1 = next _state \& (IM-1)$

output = t1 / IM

current_state = next_state

Note: & is bit-wise and operation

Pseudo-Random Number Generation Algorithm Cont'd

- Other algorithms
 - Yarrow algorithm
 - Mersenne twister
 - Best psudo-number generation algorithm
 - Applied in Matlab 'rand()' function
 - o http://en.wikipedia.org/wiki/Mersenne_twister

Problem of Pseudo Random Sequence

- Problem: Always produce the same sequence thereafter when initialized with the initial state
 Solve: Use true-random number as starting state.
 Example: Use time as random seed
- Problem: Always repeat after a certain length Solve: Make the repeat period long enough to prevent repeat of sequence.

Example: Mersenne twister achieves period 2¹⁹⁹³⁷.

Generate Samples of Arbitrary Distribution

- Given CDF_X of random variable X with any arbitrary distribution, generate samples of X
- Method
 - Generate uniform pseudo random samples $(U_1, U_2, ..., U_N) \in (0,1)$
 - Obtain samples of X by $X_i = CDF_X^{-1}(U_i)$
 - **Proof** $CDF(X_i) = P\{X_i < CDF_X^{-1}(U_i)\} = P\{U_i < CDF(X)\} = CDF\{X\}$
- Matlab functions

• 'randn()', 'lognrnd()', 'random()'

Generate Correlated Random Samples

- Given joint Gaussian random vector $X = (X_1, X_2, ..., X_n)^T$ with mean vector M = E[X] and covariance matrix $C = E[XX^T]$
 - Generate samples for X
 - Note: covariance matrix C is positive semi-definite
- Method
 - Perform eigenvalue decomposition of covariance matrix $C = V A V^{T}$
 - Generate samples of independent standard Gaussian random vector $Y = (Y_1, Y_2, ..., Y_n)^T$
 - $X = V \Lambda^{1/2} Y$ are the samples of correlated Gaussian random vector
- Matlab functions
 - o 'normrnd()', 'lognrnd()'
- Correlated non-Gaussian samples
 - Generated correlated non-Gaussian samples is very difficult
 - No efficient way to achieve

Quasi-Random Sequence

Quasi-random sequence

- Low discrepancy array
- Converge faster than pure random sequence in low dimensional cases
- Not work for very high dimensional case
- Algorithms
 - Sobal
 - Halton