
Introduction of Pseudo-Random 
Number Generator



True Random Number and Pseudo-Random 
Number

 True Random Number Sequence

 Not predictable
 Cannot predict the next number of the sequence based on the 

current numbers

 Difficult to be generated using software
 Software has only deterministic operations

 Can be generated using hardware
 Based on microscopic phenomena such as thermal noise

 Pseudo-Random Number Sequence

 Sequence of number determined by a small set of initial values 

 The number follows a certain distribution (usually uniform)

 Predictable
 Next number of the sequence is determined by the current state

 Can be generated using software



Pseudo-Random Number Generation 
Algorithm

 Middle Square Method

 Start from an n digit number

 Calculate square of an n digit number, resulting a 2n digit 
number

 Use the middle  n digit of the 2n digit number as current number

 Use the current n digit random number to generate next number

 Example:

1st 1111

2nd11112 = 01234321 -> 2343

3rd 23432 = 05489649 -> 4896

…



Pseudo-Random Number Generation 
Algorithm Cont’d 

 Better  algorithm

Select unsign number: IA, IM,IC

start with a current state: current_state

next_state = cur * IA + IC

t1 = next _state & (IM-1)

output = t1 / IM

current_state = next_state

Note: & is bit-wise and operation



Pseudo-Random Number Generation 
Algorithm Cont’d 

 Other algorithms

 Yarrow algorithm

 Mersenne twister
 Best psudo-number generation algorithm 
 Applied in Matlab ‘rand()’ function
 http://en.wikipedia.org/wiki/Mersenne_twister



Problem of Pseudo Random Sequence

 Problem: Always produce the same sequence thereafter when 
initialized with the initial state 

Solve: Use true-random number as starting state.

Example: Use time as random seed

 Problem: Always repeat after a certain length

Solve: Make the repeat period long enough to prevent repeat of 
sequence.

Example: Mersenne twister  achieves period 219937.



Generate Samples of Arbitrary Distribution

 Given CDFX of random variable X with 
any arbitrary distribution, generate 
samples of X

 Method

 Generate uniform pseudo random 
samples (U1, U2, …UN)∈(0,1)

 Obtain samples of X by Xi=CDFX
-1(Ui)

 Proof CDF(Xi)=P{Xi<CDFX
-1 (Ui)} = 

P{Ui<CDF(X)}=CDF{X}

 Matlab functions

 ‘randn()’, ‘lognrnd()’, ‘random()’ 

U1 U2

X1

X2



Generate Correlated Random Samples

 Given joint Gaussian random vector X=(X1, X2, … Xn)
T with 

mean vector M=E[X] and covariance matrix C=E[XXT]

 Generate samples for X
 Note: covariance matrix C is positive semi-definite

 Method

 Perform eigenvalue decomposition of covariance matrix C=VΛVT

 Generate samples of independent standard Gaussian random 
vector Y=(Y1, Y2, … Yn)

T 

 X=VΛ1/2Y are the samples of correlated Gaussian random vector

 Matlab functions

 ‘normrnd()’, ‘lognrnd()’

 Correlated non-Gaussian samples

 Generated correlated non-Gaussian samples is very difficult

 No efficient way to achieve



Quasi-Random Sequence

 Quasi-random sequence

 Low discrepancy array

 Converge faster than pure random sequence in low dimensional 
cases

 Not work for very high dimensional case

 Algorithms

 Sobal 

 Halton 


