
Introduction of Pseudo-Random
Number Generator

True Random Number and Pseudo-Random
Number

 True Random Number Sequence

 Not predictable
 Cannot predict the next number of the sequence based on the

current numbers

 Difficult to be generated using software
 Software has only deterministic operations

 Can be generated using hardware
 Based on microscopic phenomena such as thermal noise

 Pseudo-Random Number Sequence

 Sequence of number determined by a small set of initial values

 The number follows a certain distribution (usually uniform)

 Predictable
 Next number of the sequence is determined by the current state

 Can be generated using software

Pseudo-Random Number Generation
Algorithm

 Middle Square Method

 Start from an n digit number

 Calculate square of an n digit number, resulting a 2n digit
number

 Use the middle n digit of the 2n digit number as current number

 Use the current n digit random number to generate next number

 Example:

1st 1111

2nd11112 = 01234321 -> 2343

3rd 23432 = 05489649 -> 4896

…

Pseudo-Random Number Generation
Algorithm Cont’d

 Better algorithm

Select unsign number: IA, IM,IC

start with a current state: current_state

next_state = cur * IA + IC

t1 = next _state & (IM-1)

output = t1 / IM

current_state = next_state

Note: & is bit-wise and operation

Pseudo-Random Number Generation
Algorithm Cont’d

 Other algorithms

 Yarrow algorithm

 Mersenne twister
 Best psudo-number generation algorithm
 Applied in Matlab ‘rand()’ function
 http://en.wikipedia.org/wiki/Mersenne_twister

Problem of Pseudo Random Sequence

 Problem: Always produce the same sequence thereafter when
initialized with the initial state

Solve: Use true-random number as starting state.

Example: Use time as random seed

 Problem: Always repeat after a certain length

Solve: Make the repeat period long enough to prevent repeat of
sequence.

Example: Mersenne twister achieves period 219937.

Generate Samples of Arbitrary Distribution

 Given CDFX of random variable X with
any arbitrary distribution, generate
samples of X

 Method

 Generate uniform pseudo random
samples (U1, U2, …UN)∈(0,1)

 Obtain samples of X by Xi=CDFX
-1(Ui)

 Proof CDF(Xi)=P{Xi<CDFX
-1 (Ui)} =

P{Ui<CDF(X)}=CDF{X}

 Matlab functions

 ‘randn()’, ‘lognrnd()’, ‘random()’

U1 U2

X1

X2

Generate Correlated Random Samples

 Given joint Gaussian random vector X=(X1, X2, … Xn)
T with

mean vector M=E[X] and covariance matrix C=E[XXT]

 Generate samples for X
 Note: covariance matrix C is positive semi-definite

 Method

 Perform eigenvalue decomposition of covariance matrix C=VΛVT

 Generate samples of independent standard Gaussian random
vector Y=(Y1, Y2, … Yn)

T

 X=VΛ1/2Y are the samples of correlated Gaussian random vector

 Matlab functions

 ‘normrnd()’, ‘lognrnd()’

 Correlated non-Gaussian samples

 Generated correlated non-Gaussian samples is very difficult

 No efficient way to achieve

Quasi-Random Sequence

 Quasi-random sequence

 Low discrepancy array

 Converge faster than pure random sequence in low dimensional
cases

 Not work for very high dimensional case

 Algorithms

 Sobal

 Halton

