
GPU: CUDA Programming Model

Session 1

Introduction

• GPU

– A highly parallel multithreaded many core
processor

• CUDA

– A parallel programming model and software
environment that exposes and helps to implement
the inherent parallelism in a program

GPU Vs CPU

The GPU devotes more
transistors to “data processing”
by compromising on “flow
control” and “data memory”

Two Essential Coding Guidelines
1. Expose Data Parallelism: Reduces the

need for flow control
2. High Arithmetic Intensity: Reduces

dependence on memory

Software Level Abstraction
•A group of threads form a block
•Every thread operates on a specific

data element
•Every thread block should be capable
of executing independently
•Threads within a block can synchronize
and depend on each other

Special CUDA Variables
1. blockIdx: block Id

 (blockIdx.x, blockIdx.y)
2. threadIdx: thread Id within a block

 (threadIdx.x, threadIdx.y, threadIdx.z)

address = blockIdx.x * blockDim.x + threadIdx.x

blockdim: number of threads in a block

Example

Memory Abstraction

Local Memory: slow and uncached

Shared Memory: fast and cached

Global Memory: slow and uncached

Others
1. Registers
2. Constant shared memory
3. Texture Memory

1. Implement data parallel chunks of code in the
device (GPU).

2. Implement serial code in the host
 Example?

3. If host code is independent, it can be
executed in parallel with the device code.

GPU Architecture

One multiprocessor executes one thread
block
1. Zero overhead for thread scheduling
2. Single Instruction thread synchronization

 _synchthreads()
3. Lightweight thread creation

SIMT: Single-instruction, multiple-thread

1. Ensure lower flow control
2. Develop code with high arithmetic

intensity

A Simple Example

Example: Matrix Multiplication

