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Abstract—In this article, we will discuss the relationship
between properties of a bitstream and the associated error.
Namely, we will show the correspondence between the length the
and associated error of the bitstream as well as the fractional
value and the associated error. Error decreases exponentially as
the length of the sequences increases. Error has a parabolic rela-
tionship with error when two sequences are multiplied together
where bitsreams closer to 1

2
have highest absolute error.
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I. INTRODUCTION

Stochastic computing is a potential alternative to traditional
computing due to its low power costs, computing efficiency,
memory persistence, and simplicity. It introduces randomness
and therefore excels in applications which allow for tolerable
error and prefer high efficiency.

In this paper, we discuss the error that arises when using
the unipolor multiplication of two bitstreams, which we define
as stochastic sequences of a given length. In the first section,
we explore the effects of increasing the bitstream length for
different fractional values. In the second section, we examine
the multiplication of two bitstreams of a set length but with
different fractional values.

Values are represented in the stochastic domain by the
probability of a ’1’ appearing in their sequence. For instance,
to represent the fraction 1

3 for a bitstream of length 9, exactly
three 1’s will appear. It is remedial to show that this rep-
resentation is non-unique, which will be utilized throughout
this paper. This encoding scheme allows for mathematical
operations using logical gates. Thus, in order to perform
unipolar multiplication of two sequences, the AND gate is used
for the bitwise operation. Similarly, scaled addition and bipolar
multiplication are obtained through the use of a MUX and a
XNOR..

Figure 1.1: The figure above shows examples of mathematical
operations for two encoded sequences. (a) shows unipolar
multiplication is calculated using an AND gate, (b) shows
scaled addition is calculated using a MUX, and (c) shows
that bipolar multiplication is calculated using an XNOR.

This paper attempts to address the accuracy issues of SC
by examining the case of unipolar multiplication. Since this
operation is a bitwise AND operation, the operation will have
a multinomial distribution. For simplicity, we will model the
generation of encoded sequences as a random process that
produces Bernoulli random variables with probability p. Error
occurs when the result of the operation is different than then
theoretical result. Absolute error is calculated by first squaring
the difference and then taking the square root of the result.

II. CALCULATING ERROR

In order to calculate error between multiplying two se-
quences, all permutations of the sequences are multiplied. That
is, every possible way to represent one fraction is operated
with the bitwise AND operation with every possible way
to represent the second. For each combination, the result
is then subtracted from the expected result and recorded.
Mathematically, the operation is as follows:

We first define a bitstream of length n to be:

Xn = (x1, x2, ..., xn)

The theoretical value from multiplying two sequences X and Y
is found by multiplying the fractional values of both sequences:

Etheoretical =

(∑i=n
i=1 xi

)(∑i=n
i=1 yi

)
n2

(1)

However, in stochastic computing, the two random se-
quences will very rarely yield the theoretical result. Instead,
the two bitsreams X and Y with respective probabilities p1 and
p2 will result in a range of values according to a multinomial
distribution. Moreover, we assume that p1 > p2. Let U be the
result of multiplying X and Y :

W = (x1y1, x2y2, ..., xnyn) = (w1, w2, ..., wn)

And let Z = XY be a random variable that multiplying these
two bitstreams can take on:

Z =
1

n

n∑
i=1

wi (2)

Therefore, the probability that Z = XY is a given fraction z
is defined by:

P (Z = z) =

(
n

np1

)(
np1

nz

)(
n−np1

np2−nz

)(
n

np1

)(
n

np2

) (3)

where z has a range of values from max(0, p1 + p2 − 1) to
p2.



Thus, the average absolute error is calculated by:

E| Error |] =
∑np2

z=max(0,np1+np2−n) P (z)

√
(nEtheoretical − z)

2 (4)

Following, the variance of the absolute error can be derrived:

VAR(| Error |) = E[| Error |2]− (E[| Error |])2 (5)

To clarify the above equations, consider the example of two
bitstreams X and Y with n = 3. Furthermore, let X and Y
have respective probabilities p1 = 1

3 and p2 = 2
3 . Therefore,

the theoretical result Etheoretical =
(
1
3

) (
2
3

)
= 2

9 . In order to
calculate, the average error, first consider all permutations of
each sequence:

X = (1, 0, 0), (0, 1, 0), (1, 0, 0)

Y = (0, 1, 1), (1, 0, 1), (1, 1, 0)

Then, each representation of X is operated with the bitwise
AND operation with each representation of Y and the number
of 1’s are summed. The results of the 9 multiplications are
then recorded:

[0, 1, 1, 1, 0, 1, 0, 1, 1]

The absolute error of each multiplication is calculated:[
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]
The average and variance of these values can be found:

E[| Error |] = 1

9

(
4

3

)
=

4

27

VAR(| Error |) =

√
1

9

(
2

81

)
=

√
2

729

III. LENGTH AND UNIPOLAR MULTIPLICATION

The probability of error is dependent on the lengths of
the sequences operated upon. Generally, as the length of the
bitstreams increases, the probability of large error decreases.
In this section, we use the method of calculating the mean and
variation of the absolute error shown previously.

To show this trend, we will find the average and mean
error for multiplying two sequences and then vary the lengths
of these sequences. In the figures below, for each length
of the sequence n, three different fractions are multiplied
together:

(
1
4

) (
1
4

)
,
(
1
2

) (
1
2

)
, and

(
3
4

) (
3
4

)
. The lengths, n are

incremented from 4 to 128 with a step of 4 for the mean and
variance.

Likewise, the normalized error, or the percent error, can
be found by dividing each error by the theoretical value,
Etheoretical. Figure 3.3 and Figure 3.4 show the normalized
average error and standard deviation.

From the figures, it is concluded that as the length of the
bitstream is increased, the mean and standard deviation of
the absolute error decreases for the same fractions represented
by the sequences. Moreover, the mean of the error decreases
exponentially whereas the variation decreases rapidly and then
remains relatively constant.

Figure 3.1: The figure above shows the mean of absolute
error for

(
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4

)2
,
(
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)2
, and

(
3
4

)2
for lengths n = 4 to

n = 128 with a step of 4.

Figure 3.2: The figure above shows the variation of absolute
error for

(
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)2
,
(
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)2
, and

(
3
4

)2
for lengths n = 4 to

n = 128 with a step of 4.

The values found were confirmed by finding every repre-
sentation of the sequence and multiplying it with one another.
For instance, for a bitstream of length n = 4, the 6 representa-
tions of 1

2 were multiplied with one another. Then, the results
were compared with the theoretical value ( 14 ) to find the mean
and standard deviation. Due to rapid increase in permutations
for larger n, this brute force method was only able to confirm
results for up to n = 12.

IV. FRACTIONAL VALUES AND UNIPOLAR
MULTIPLICATION

Next, we find the mean and standard deviation of the
absolute error by comparing different fractional values while
maintaining constant sequence length. In other words, we will
compare the effects of multiplying different fractions with one
another and keep the length of the bitstream the same. The
same methods to find mean and variation of multiplying two
bitstreams are used. Generally, multiplying two fractions near
1
2 will result in higher absolute error but lower normalized
error.



Figure 3.3: The figure above shows the mean of the
normalized absolute error for
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for

lengths n = 4 to n = 128 with a step of 4.

Figure 3.4: The figure above shows the variation of the
normalized absolute error for
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for

lengths n = 4 to n = 128 with a step of 4.

Figure 4.1 and Figure 4.2 shows the mean and variation of
the absolute error for n = 64. Similarly, Figure 4.3 and Figure
4.4 show the normalized mean and standard deviation. Again,
the relative error is found by dividing by the theoretical value.

It is evident from the figures that error is maximized as
the multiplied fractions approach 1

2 as both the mean and
standard deviation of the absolute error is maximum. However,
relative error has an opposite trend with minimum error near
the center and higher relative error when smaller fractions are
multiplied. This large error near frac12 is due to the nature
of multinomials and the maximum number of permutations at
this value.

As before, the results were confirmed with a brute force
approach by producing every permutation of each fraction for
a given n and finding the mean and standard deviation. In this
case, up to n = 12 was used to confirm the results of the
multinomial formula.

Figure 4.1: The figure above shows the mean of the absolute
error for n = 64. Each fraction is multiplied with each other

fraction to determine the absolute error.

Figure 4.2: The figure above shows the variation of the
absolute error for n = 64. Each fraction is multiplied with

each other fraction to determine the absolute error.

V. LENGTH AND FRACTIONS

In general, the longer the sequences, the lower chance of
error. Moreover, multiplying fractions that are furthest from 1

2
will result in lower chances of error.

The graphs in Figure 5.1 present the results for multiplying
different fractions. On each plot, the different graphs represent
different bitstream lengths (n = 32, 64, and 512).

VI. CONCLUSION

Throughout this paper, we showed the effects of changing
the length of the sequences and the fractions they represent.
By both symbolic derivation and methodological simulation,
we determined that the absolute error decreases exponentially
as length increases and the error decreases parabolically as
represented fractions tend away from 1

2 . Moreover, the per-
cent error, which refers to the error when compared to the
theoretical results, has the same relationship as absolute error
for increasing sequence length but an inverse relationship for
fractional representation. Thus, to have a high confidence level



Figure 4.3: The figure above shows the mean of the
normalized absolute error for n = 64. Each fraction is

multiplied with each other fraction to determine the absolute
and relative error.

Figure 4.4: The figure above shows the variation of the
normalized absolute error for n = 64. Each fraction is

multiplied with each other fraction to determine the absolute
and relative error.

when multiplying two stochastic sequences, we should use
longer bitstreams and avoid fractions near 1

2 .
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Figure 5.1: The above figure shows the different CDF’s
versus percent error for different multiplying fractions. Each

plot shows the cumulative density function for error for
n = 32 (blue), n = 64 (red), and n = 512 (yellow).


