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Memory is Essential
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Hardware Variability in Memory

Hardware variability is particularly 
problematic for memories:

1. Smallest and densest device/circuit 
features

2. Large fraction of the chip area budget
3. Must permit instability in order to be 

rewritable

Memories are particularly susceptible to:
1. Manufacturing defects
2. Parametric variations
3. The operating environment

Memory wall often limits:
1. Energy efficiency
2. System resiliency
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Introduction

[Hennessy & Patterson ‘12]

32nm eDRAM in the IBM Power 7 Processor [ChipWorks]



Better-Than-Worst-Case Design
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Introduction

Time or part 

Heterogeneity and 
variability exposed 
to software 

Underdesigned 
Hardware 

Opportunistic 
Software 

 Application 

  Hardware Abstraction Layer (HAL) 

Operating System 

 Application 

Underdesigned and Opportunistic 
Computing machines

[Gupta et al. TCAD’13]



My Framework
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Opportunistic Memory Systems

System software

Applications

Circuits and architecture

Devices and technology

Programmer
Intent

Software
Behavior

Runtime
Objectives

Process
variability

Environ.
variability

Energy-
efficient
&

reliable
operation

Introduction

Opportunistic Memory 
Systems exploit & cope with 
hardware variations within and 
across individual chips for 
improved energy efficiency and 
resiliency.



Overview of My Dissertation
Part 1: Opportunistically Exploiting Memory Variability

1. ViPZonE: Saving Energy in DRAM Main Memory
with Power Variation-Aware Memory Management

2. DPCS: Saving Energy in SRAM Caches
with Dynamic Power/Capacity Scaling

3. X-Mem: Case Studies on Memory Performance Variability
with the new Extensible Memory Characterization Tool

Part 2: Opportunistically Coping with Memory Errors

4. Performability: Exploring the Impact of Corrected Memory Errors
by quantifying and analytically modeling their performance effects

5. SDECC: Recovering from Detected-but-Uncorrectable Memory Errors
with Software-Defined Error-Correcting Codes

6. ViFFTo: Improving Reliability of Embedded Scratchpad Memories
with Virtualization-Free Fault Tolerance
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Introduction



Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work
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ViPZonE: Saving Energy in DRAM Main 
Memory using Power Variation-
Aware Memory Management

Collaborators:

Dr. Luis A. D. Bathen (UC Irvine) 
Prof. Nikil Dutt (UC Irvine)

Prof. Alex Nicolau (UC Irvine) 
Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., ESL’12
Bathen et al., CODES+ISSS’12
Dutt et al., ASP-DAC’13
Gottscho et al., TC’15
Wanner et al., it’15

Chapter 2

Part 1: Opportunistically Exploiting Memory Variability



Part 1: Opportunistically Exploiting Memory Variability

Summary of ViPZonE

ViPZonE-enabled apps tell OS how to 
allocate virtual pages w/ special 
variant of malloc() in modified 
standard C library

1

2

3

DIMM 
Zone 1

DIMM 
Zone 2

DIMM 
Zone 3

DIMM 
Zone N

O
S

 
Layer

Upper OS Layer [Linux]
Virtual memory management

Application
(ViPZonE aware)

Lower OS Layer [Linux]
DIMM power-variability aware

physical address zoning and page allocation

Memory Controller

ViPZonE 
enhanced

DIMM 
Power 
Profiles

H
ardw

are 
Layer

A
pplication 
Layer

Application
(Legacy)

Runtime Libraries [GLIBC]

malloc vip_malloc

vip_mmap
syscall

mmap
syscall

ViPZonE-enabled glibc tells OS how 
to allocate virtual pages w/ special 
variant of mmap() syscall

Kernel’s physical page allocator 
attempts to map allocated virtual 
page in particular memory device

[Gottscho ESL’12, Bathen CODES+ISSS’12, Dutt ASP-DAC’13, Gottscho TC’15, Wanner it’15]
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Legacy app does not exploit power variability!
ViPZonE app consolidates pages onto low power zones!



Part 1: Opportunistically Exploiting Memory Variability

Summary of ViPZonE
[Gottscho ESL’12, Bathen CODES+ISSS’12, Dutt ASP-DAC’13, Gottscho TC’15, Wanner it’15]
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ViPZonE-enabled apps tell OS how to 
allocate virtual pages w/ special 
variant of malloc() in modified 
standard C library

DIMM 
Zone 1

DIMM 
Zone 2

DIMM 
Zone 3

DIMM 
Zone N

O
S

 
Layer

Upper OS Layer [Linux]
Virtual memory management

Application
(ViPZonE aware)

Lower OS Layer [Linux]
DIMM power-variability aware

physical address zoning and page allocation

Memory Controller

ViPZonE 
enhanced

DIMM 
Power 
Profiles

H
ardw

are 
Layer

A
pplication 
Layer

Application
(Legacy)

Runtime Libraries [GLIBC]

malloc vip_malloc

vip_mmap
syscall

mmap
syscall

ViPZonE-enabled glibc tells OS how 
to allocate virtual pages w/ special 
variant of mmap() syscall

Kernel’s physical page allocator 
attempts to map allocated virtual 
page in particular memory device

• Up to 27.8% energy savings on Intel Sandy Bridge/DDR3 
testbed desktop

• No more than 4.8% performance degradation

Use ViPZonE when high memory-level parallelism
or bandwidth is not needed

Physical zoning inherently trades off benefits of striping for resource consolidation 
and exploitation of device variations

Opportunistically save energy in today’s systems with no 
hardware changes

Through smart management of physical memory variation signatures



DPCS: Saving Energy in SRAM Caches 
with Dynamic Power/Capacity Scaling

Collaborators:

Dr. Abbas BanaiyanMofrad (UC Irvine)
Prof. Nikil Dutt (UC Irvine)

Prof. Alex Nicolau (UC Irvine)
Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., DAC’14
Dutt et al., DAC’14
Gottscho et al., TACO’15
Wanner et al., it’15

Chapter 3

Part 1: Opportunistically Exploiting Memory Variability



[Gottscho DAC’14, Dutt DAC’14, Gottscho TACO’15, Wanner it’15]

Summary of DPCS
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Part 1: Opportunistically Exploiting Memory Variability

SRAM
Data Array

Col. Decode

R
ow
 D
ec
od
e

SR
AM

M
et
ad
at
a/
Ta
g 
Ar
ra
y

Col 
Dec

• Pre-characterize SRAM faults using BIST
• Encode min non-faulty VDD on per-block basis

• Store in modified tag array with 2 extra bits per block

SRAM
Data Array
SRAM

Data Array

Dynamic 
Power/Capacity 

Scaling

• High performance mode
• Full VDD & cache capacity

• Low power mode
• Reduced VDD, disabled faulty blocks



[Gottscho DAC’14, Dutt DAC’14, Gottscho TACO’15, Wanner it’15]

Summary of DPCS
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Part 1: Opportunistically Exploiting Memory Variability

SRAM
Data Array

Col. Decode
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Dec

• Pre-characterize SRAM faults using BIST
• Encode min non-faulty VDD on per-block basis

• Store in modified tag array with 2 extra bits per block

SRAM
Data Array
SRAM

Data Array

Dynamic 
Power/Capacity 

Scaling

• High performance mode
• Full VDD & cache capacity

• Low power mode
• Reduced VDD, disabled faulty blocks

• Up to 79% total cache energy savings
• Up to 26% total system energy savings
• Average 2.24 % performance overhead
• 6% total cache area overhead

Power vs. capacity tuning
Useful energy efficiency knob, complements DVFS

Fault Inclusion Property
Exploit it for efficient storage of fault maps

Opportunistic approach to energy-efficient caches
Leverage variability without harming reliability or performance



X-Mem: A New Tool for Case Studies on 
Memory Performance Variability

Collaborators:

Dr. Sriram Govindan (Microsoft)
Dr. Bikash Sharma (Microsoft)

Dr. Mohammed Shoaib (Microsoft 
Research)

Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., ISPASS’16

Chapter 4

Part 1: Opportunistically Exploiting Memory Variability



Summary of X-Mem
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Part 1: Opportunistically Exploiting Memory Variability

DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Code at http://nanocad-lab.github.io/X-Mem

[Gottscho ISPASS’16]



Summary of X-Mem
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Part 1: Opportunistically Exploiting Memory Variability

DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Code at http://nanocad-lab.github.io/X-Mem

[Gottscho ISPASS’16]
New flexible tool for characterizing memory systems

Surpasses capabilities of all prior tools

Key Features
(A) Diverse access patterns

(B) Cross-platform
(C) Flexible metrics
(D) Extensible

Three case studies
Explored efficacy of opportunistic variation-aware DRAM latency tuning



Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work
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Performability: The Impact of 
Corrected Memory Errors on 

Performance

Collaborators:

Dr. Mohammed Shoaib (Microsoft 
Research)

Dr. Sriram Govindan (Microsoft)
Dr. Bikash Sharma (Microsoft)

Dr. Di Wang (Microsoft Research)
Prof. Puneet Gupta (UCLA)

Chapter 5

Part 2: Opportunistically Coping with Memory Errors

Publications:

Gottscho et al., CAL’16



How Fault Tolerance Impacts 
Cloud Application Performance
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Mirroring Sparing

..zz..

ECC Encode/Decode
Hc’=0

Error Logging Checkpointing Page Retirement



Measured Performance Degradation
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Part 2: Opportunistically Coping with Memory Errors

[Gottscho CAL’16]

Interactive application (web search)

Corrected memory errors can 
have severe impact on 
application performance!

X-Mem extended: controlled injections of 
correctable memory errors in production-
spec cloud server



Queuing-Theoretic Models 
for Performance Degradation
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Part 2: Opportunistically Coping with Memory Errors

Batch applications on multiprocessors 
with broadcast error handling



Summary of Performability
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Part 2: Opportunistically Coping with Memory Errors

Availability Model
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(no errors occur)

Availability 
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Project result

Memory 
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Decisions

Goal for 
cloud provider
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Input

C
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ng
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e 
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Recommendations
• Integrate performability models and empirical data into high-level TCO models
• Reduce the overhead of hardware error reporting via architecture/firmware/OS optimizations
• Prevent faults proactively using page retirement and variation-aware memory management



Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work
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Part 2: Opportunistically Coping with Memory Errors



SDECC: Recovering from Detected-but-
Uncorrectable Memory Errors using 

Software-Defined Error-Correcting Codes

Collaborators:

Clayton Schoeny (UCLA)
Prof. Lara Dolecek (UCLA)
Prof. Puneet Gupta (UCLA)

Chapter 6

Publications:

Gottscho et al., SELSE’16
Gottscho et al., DSN-W’16
Gottscho et al., 2017 manuscript 
submitted and under peer review

Part 2: Opportunistically Coping with Memory Errors



SDECC Concept
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Error-Correcting 
Codes

System-Level 
Fault Tolerance

Side-information
about data in memory

Software-Defined ECC

No Fault Fault

Corrected 
Error (CE)

Detected but 
Uncorrectable 
Error (DUE)

Miscorrected
Error (MCE)

Undetected 
Error (UDE)

SDECC

Forced Panic

Part 2: Opportunistically Coping with Memory Errors

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]



[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

Part 2: Opportunistically Coping with Memory Errors
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Candidate Codewords

Example using SECDED
(concept applies generally)

26

Codeword

Hamming
sphere

2-bit DUE with
4 equidistant
candidate
codewords

2-bit DUE with
3 equidistant
candidate
codewords1-bit CE

Each dotted edge
is a single-bit
flip between two n-bit strings



Analysis of Existing ECC Codes
Class of Code Type of Code n k t q

32-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

39 32 1 2

32-bit 
SECDED

[Davydov 
Trans.IT ‘91]

39 32 1 2

64-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

72 64 1 2

64-bit 
SECDED

[Davydov 
Trans.IT ‘91]

72 64 1 2

32-bit 
DECTED

- 39 32 2 2

64-bit 
DECTED

- 79 64 2 2

128-bit 
SSCDSD 
(ChipKill-
Correct)

[Kaneda Trans. 
Comp ‘82]

36 32 1 16
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Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Class of Code Type of Code n k t q # ways 
DUE

32-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

39 32 1 2 741

32-bit 
SECDED

[Davydov 
Trans.IT ‘91]

39 32 1 2 741

64-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

72 64 1 2 2556

64-bit 
SECDED

[Davydov 
Trans.IT ‘91]

72 64 1 2 2556

32-bit 
DECTED

- 39 32 2 2 14190

64-bit 
DECTED

- 79 64 2 2 79079

128-bit 
SSCDSD 
(ChipKill-
Correct)

[Kaneda Trans. 
Comp ‘82]

36 32 1 16 141750

Class of Code Type of Code n k t q # ways 
DUE

Avg. # 
C.C.

32-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

39 32 1 2 741 12.04

32-bit 
SECDED

[Davydov 
Trans.IT ‘91]

39 32 1 2 741 9.67

64-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

72 64 1 2 2556 20.73

64-bit 
SECDED

[Davydov 
Trans.IT ‘91]

72 64 1 2 2556 16.62

32-bit 
DECTED

- 39 32 2 2 14190 4.12

64-bit 
DECTED

- 79 64 2 2 79079 5.40

128-bit 
SSCDSD 
(ChipKill-
Correct)

[Kaneda Trans. 
Comp ‘82]

36 32 1 16 141750 3.38

Class of Code Type of Code n k t q # ways 
DUE

Avg. # 
C.C.

Baseline Prob. 
Success

32-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

39 32 1 2 741 12.04 8.50%

32-bit 
SECDED

[Davydov 
Trans.IT ‘91]

39 32 1 2 741 9.67 11.70%

64-bit 
SECDED

[Hsiao IBM 
Jour. ‘70]

72 64 1 2 2556 20.73 4.97%

64-bit 
SECDED

[Davydov 
Trans.IT ‘91]

72 64 1 2 2556 16.62 6.85%

32-bit 
DECTED

- 39 32 2 2 14190 4.12 28.20%

64-bit 
DECTED

- 79 64 2 2 79079 5.40 20.53%

128-bit 
SSCDSD 
(ChipKill-
Correct)

[Kaneda Trans. 
Comp ‘82]

36 32 1 16 141750 3.38 39.88%



Computing Candidate Codewords
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Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

1000 1000 1000 0001
0000 0000 0000 0000

0000 1000 1000 0000

0110 1000 1000 0000
0001 1000 1000 0000
0000 0000 0000 0000

Original Codeword

Received String (2-bit DUE)

Candidate Codewords

…Actual error positions

Perturbed
bit flip

Decoded
bit flipExample using SECDED

Algorithm
For each symbol-wise error position

For each symbol-wise error value
Perturb received string using current position/value
ECC-decode the perturbed string
If decoder produces a codeword

Add codeword to list of candidates

3-bit DUE, 
not a candidate!



Exploiting Data Side Information in Memory

Ti
m

e

Word 0: 0x0...00000000

Word 1: 0x0...0000000B

Word 2: 0x0...00000003

Word 3: 0x0...00350001

Word 4: 0x0...00000004

Word 5: 0x0...00000000

Word 6: 0x0...00000003

Word 7: 0x0...00000004

64-bit data 
+ 8-bit parity (not shown)

64
B 

C
ac

he
 L

in
e

B
ur
st
 o
f 6
4-
bi
t w
or
ds

ov
er
 8
 c
lo
ck
 c
yc
le
s

..00

x0...0

..00

0x0...0

Main Memory

Memory Controller 
with (72,64) SECDED ECC

0 0

DUE: candidate codeword changes 0x00 to 0x35

Data types
• uint32_t, double, 
pointers, packed arrays, 
classes…

Object states
• Assertions, invalid pointers…

Data correlation
• Previously used for compression

[Yang MICRO’00, Alameldeen ‘04, Pekhimenko PACT’12]
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[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]



Data Entropy-based Recovery Policy

• Use entropy to determine 
most-correlated candidate 
codeword
– High entropy detected à
force a panic 

– Low entropy detected à
heuristically recover

𝑥": Value of byte i in 64B cache line 

Forced Panic

Heuristically Recover

𝑬𝒏𝒕𝒓𝒐𝒑𝒚: 	𝐻 𝑋 = −0𝑃 𝑥" log5 𝑃 𝑥"

67

"89

Panic
Threshold
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Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]



Architectural Support: SDECC for Main Memory

• Existing DRAM systems 
already have most of the 
required support for SDECC
• ECC decoder
• Error status registers
• Error-reporting interrupts

• We only need to expose the 
corrupted cacheline to 
system software!
• Extend functionality of existing error 
status registers and interrupt

No performance/energy overhead
in common cases with no DUE!
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[Gottscho ‘17]



Overall SDECC Approach

ECC decode No errors or correctable 
errors (CEs)?

Probabilistic 
Success

Yes

Yes

Calculate cacheline sample 
entropy for each CC

Min. entropy above 
given threshold?

No

Force panic

Heuristically recover 
most likely CC

No (DUE)

Compute candidate 
codewords (CCs)

Write back recovered 
CC to Penalty BoxSoftware

HardwareRead Penalty Box

Success
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[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]



Results: DUE Recovery Breakdown

0.0

69.1 70.3 71.6 74.0 77.5 84.0 85.7
100.0

25.6 25.2 23.7 21.9 20.3 14.5 12.8

0.0 5.3 4.5 4.7 4.1 2.2 1.5 1.5

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Pe
rc
en
t o
f D
U
Es

ECC Code

SDECC Recovery Breakdown

success forced panic induced MCE

• Trace-based fault injection 
campaign

• 20 SPEC CPU2006 
benchmarks

• RISC-V instruction set 
architecture
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[Gottscho ‘17]



Results for Approximation-Tolerant Applications
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[Gottscho ‘17]

Original image 
(jpeg benchmark)

Worst-case corrupted 
image (out of 1000) Pixel Delta

- =

[72,64,4]_2 
Hsiao SECDED



Pruning Candidates with Lightweight Hashes

Solution: lightweight hashes
• Compute small (4, 8, or 16-bit) universal hash of original 
cacheline, store in memory
• If-and-only-if DUE occurs:

• Read out original hash
• Compare it against computed candidate hashes

What if we could prune the list of candidate 
codewords to improve chance of recovery?
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[Gottscho ‘17]



Lightweight Hash Implementation: ChipKill
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[Gottscho ‘17]



With Hashes

ECC decode No errors or correctable 
errors (CEs)?

Yes

Min. entropy above 
given threshold?

No

Force panic

Heuristically recover 
most likely CC

No (DUE) Write back recovered 
CC to Penalty BoxSoftware

HardwareRead Penalty Box

Filter using
cacheline hash

Hash outcome?

Calculate cacheline sample 
entropy for each CC

Compute candidate 
codewords (CCs)

No CC match

One or more 
CC match

Overall SDECC Approach
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Success

Yes
Success

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]



Results: DUE Recovery Breakdown with Hashes

Lightweight hashes can improve 
SDECC recovery rates by orders 

of magnitude
2.84E-1

1.22E-1

1.44E-2

1.43E-1

1.95E-2

6.00E-4

1.00E-6

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0
none 4-bit 8-bit none 4-bit 8-bit 16-bit

[72,64,4]_2 
SECDED (Hsiao)

[36,32,4]_16 SSCDSD 
(ChipKill-correct)

SD
EC
C
 F
ai
lu
re
 R
at
e 
(F
ra
ct
io
n 
of
 D
U
Es
)

SDECC Failure Rate With Hashes
(Forced Panic or Induced MCE) 

Close to DEC
“almost for free”

Close to Double-ChipKill
“almost for free”
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[Gottscho ‘17]

baseline none 4-bit 8-bit 16-bit

SECDED 5% 71.6% 87.8% 98.56% N/A

ChipKill 39.9% 85.7% 98.05% 99.940% 99.9999%

Rates of Successful DUE Recovery



Summary of SDECC

• Reliability Benefits
– Approximation-tolerant applications

• Recover up to 92.4% of DUEs with [72,64,4]_2 SECDED
• As low as 0.1% intolerable NSDC rate

– Approximation-intolerant applications with 16-bit Lightweight Hash
• Recover up to 99.9999% of DUEs with [36,32,4]_16 SSCDSD ChipKill-correct
• MCE rate less than 0.2 ppm of DUEs

• Applications to several domains
– Supercomputing: help reduce checkpoint frequency, saving time/energy
– Approximation-tolerant IoT devices: support error correction at low cost
– Real-time embedded systems: avoid missing deadlines when errors occur
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Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work
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ViFFTo: Virtualization-Free Fault 
Tolerance for Embedded Scratchpad 

Memories at Low Cost

Collaborators:

Irina Alam (UCLA)
Clayton Schoeny (UCLA)
Prof. Lara Dolecek (UCLA)
Prof. Puneet Gupta (UCLA)

Chapter 7

Publications:

Gottscho et al., 2017 manuscript 
submitted and under peer review

Part 2: Opportunistically Coping with Memory Errors



ViFFTo Approach
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FaultLink: Guarding Against Hard Faults at Link-Time
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700 mV750 mV 650 mV

Test chip data SPM



Results: Hard Faults
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SDELC: Guarding Against Soft Faults at Run-Time

Software-Defined Error-Localizing Codes (SDELCs)
• Based on novel Ultra-Lightweight Error-Localizing Codes (UL-ELCs)

– Between parity & Hamming code
– Detect & localize 1-bit errors to specific chunk

Software-Defined Recovery using Embedded C Library
• Application-driven data & instruction recovery policies
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Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

r = 1

r = 2

r = 3

Parity bitsMessage bits



Results: Soft Faults

70% of single-bit errors can be recovered 
at less than half the cost of a standard 

Hamming code!
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Summary of ViFFTo

• ViFFTo opportunistically copes with memory errors in low-
cost IoT devices
– FaultLink can reduce VDD by up to 440 mV
– SDELC can recover 70-90% of single-bit soft faults 

• Minimal or no hardware overheads required
– Improve yield (cost), energy, and reliability of IoT devices
– Safest for approximation-tolerant applications
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Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 48



Summary of Dissertation
• Addressing energy efficiency and 
resiliency of memories is 
essential

• Opportunistic memory systems 
can help solve this problem!

• Part 1: ViPZonE, DPCS, X-Mem
– Exploited hardware variability

• Part 2: Performability, SDECC, ViFFTo
– Coped with memory errors
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Conclusion and Directions for Future Work

Open-source code available at https://github.com/nanocad-lab
Data available at http://nanocad.ee.ucla.edu/Main/DownloadForm

Design
heterogeneity

Manifested
Errors

Variation 
signatures,
fault maps

Opportunistic Memory Systems

System software

Applications

Circuits and architecture

Devices and technology

Programmer
Intent

Software
Behavior

Runtime
Objectives

Process
variability

Environ.
variability

Energy-
efficient
&

reliable
operation



Directions for Future Work

• Short-term
– Software-Defined ECC with fault models
– Application-specific fault tolerance for hardware accelerators 
– Adapting techniques to emerging non-volatile memory devices

• Long-term
– Joint abstractions for heterogeneity and variability
– Checkerboard Architecture

• Vision
– Demand for data + hardware specialization à Opportunistic Memory Systems
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1. Introduction
Bonus Slides
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Main Memory System
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Faults in the Memory Hierarchy
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How Much Hardware Variability is There?
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The Variability Problem
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2. ViPZonE
Bonus Slides
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Motivation: Power Variability in 
Contemporary DRAMs

[Gottscho et al. ESL’12]

Significant power variations measured 
in off-the-shelf DDR3 memory
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Systems could save energy by exploiting 
active memory power variability!



Related Work

• Power-aware memory systems
– Page allocation [Lebeck et al. ASPLOS’00]
– Scheduler-based [Delaluz et al. DAC’02]
– Page miss rates [Zhou et al. ASPLOS’04]
– Adaptive architecture [Zheng et al. MICRO’08]
– Independent DRAMs [Ahn et al. CAL’08]

• Variation-aware circuits and systems
– Task scheduling [Wang et al. ICCAD’07]
– Speed binning multicore processors [Sartori et al. ISQED’10]
– Embedded sensing [Wanner et al. HotPower’10, DATE’11]
– Quality adaptation [Pant et al. GLSVLSI’10]
– Variation-tolerant on-chip memories [Meng et al. ISLPED’06, 
Liang et al. MICRO’07, Mutyam et al. TC’09]
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No prior work on SW-based variation-aware memory 
management except VaMV [Bathen et al. DATE’12]

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]
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“ViPZonEs” have different power characteristics because 
they are directly mapped to DIMMs exhibiting variation
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• Assume DDR3 with:
– 2 channels
– 2 DIMMs per channel
– 2 ranks per DIMM
– All rank capacities equal

• Assume data mapping:
– Data striped channels, DIMMs, 
and ranks @ cache line granularity
– Stripe size < page size, 
e.g. 64B vs 4KB

DRAM Channel and Rank Interleaving
[Gottscho et al. TC’15]

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 63

Conventional interleaving is good for memory-level 
parallelism for within-page access patterns
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• No striping of adjacent cache 
lines
• Single-page access = single-
rank access
• Non-accessed ranks can enter 
low power states more often
• BUT: reduced memory-level 
parallelism for access to 
adjacent cache lines

Interleaving Disabled
[Gottscho et al. TC’15]
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Disabling interleaving allows ViPZonE to work but could 
impact baseline performance



Implementation: Application Layer

#include <stdlib.h> //Special ViPZonE GLIBC with ViPZonE Linux kernel

//…some code…

void foo(size_t arraySize) {
int *data_ptr = NULL;

/* Possible vip_malloc() flags:
* One of: VIP_WRITE or VIP_READ
* One of: VIP_HIGH_UTIL or VIP_LOW_UTIL
* Programmer is responsible to decide
*/

data_ptr = (int *) vip_malloc(sizeof(int)*arraySize,
VIP_WRITE | VIP_HIGH_UTIL);

//…some write-heavy operations…

vip_free(data_ptr);
}

1

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]
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vip_malloc() abstracts memory power variability 
in a user-friendly way



Implementation: Upper OS Layer

ViPZonE-enabled user 
app

2

ViPZonE GLIBC

Legacy user app

ViPZonE kernel
Set ViPZonE flags for the virtual memory area

vip_malloc() malloc()

vip_mmap()
syscall

mmap()
syscall

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]
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New apps can exploit ViPZonE, 
legacy apps work the same



We are exploring other possible algorithms

Implementation: Lower OS Layer
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Simplicity à Fast kernel J



Simulation Results: Promising Power Savings

• Simulations show that memory 
power savings could be up to 
~20%

– Using the 1GB DIMM variability 
data shown earlier
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• Memory power savings could 
increase to ~30% if future DIMM 
variability increases to 100%
• Performance overhead was 
expected to be modest

[Bathen et al. CODES+ISSS’12]
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Detailed simulations indicate promising power 
savings



Measured Testbed Results
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[Gottscho et al. TC’15]

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Good energy savings for non-bandwidth-
intensive applications



Hypothetical Benefits for NVMs

70

[Gottscho et al. TC’15]

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Idle power is the limiting factor for ViPZonE
on current hardware



Summary
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Benefits on testbed running PARSEC:

• Up to 25.1% memory power savings

• No more than 4.8% performance degradation

• Up to 27.8% memory energy savings

• Up to 50.7% hypothetical memory energy savings if 
NVMs used

Use when high memory-level parallelism
or bandwidth not needed

Physical zoning inherently trades off benefits of striping for resource 
consolidation and exploitation of device variations

Opportunistically save energy in today’s systems with 
no hardware changes

Through smart management of physical memory variation signatures

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]



3. DPCS
Bonus Slides
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Motivation: Increasing Process Variability 
Limits SRAM Voltage Scaling

73
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[Gottscho et al. DAC’14]
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Limited min-VDD/yield, leakage-dominated 
caches, increasing portion of overall power



Related Work

• Rich body of work for fault-tolerant voltage-
scalable (FTVS) cache memories in 
nanoscale era
– Leakage reduction (famously: [Powell et al. ISLPED’00, Flautner et 
al. ISCA’02])

– Fault tolerant circuits/architecture/ECC [Shirvani & 
McCluskey VLSI Test ‘99, Agarwal et al. TVLSI’05, Ansari et al. MICRO’09, 
Alameldeen et al. TC’11, etc.]

– Memory power/performance scaling [Fan et al. ‘05, Deng 
et al. ASPLOS’11, David et al. ICAC’11, Deng et al. MICRO’12] for 
energy proportionality
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DPCS is the first FTVS scheme that efficiently leverages 
multiple voltage levels and power gating of disabled blocks, 

and supplements DVFS for logic



Question

How to optimize SRAM
for the “best” system-level tradeoffs in
energy, reliability, performance, & area?

75

[Gottscho et al. DAC’14, TACO’15]
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There are many possible fault-tolerant cache 
design schemes that can be used!



Amdahl's Law Re-Formulated

76

Save energy via 
simple & low-overhead

fault-tolerant, voltage-scalable (FTVS)  
SRAM cache architecture

[Gottscho et al. DAC’14, TACO’15]
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Using Fault Tolerance to Achieve 
Lower min-VDD

Many fault-tolerant, voltage-scalable (FTVS) approaches 
lower min-VDD using sophisticated fault tolerance methods

77
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PURPLE = periphery 
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BLUE = SRAM cells 
(bright is higher 
VDD)

[Gottscho et al. DAC’14]
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Using Fault Tolerance to Achieve 
Lower min-VDD
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ECC Cache, Data Array @ 0.7 VDD
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Many fault-tolerant, voltage-scalable (FTVS) approaches 
lower min-VDD using sophisticated fault tolerance methods

[Gottscho et al. DAC’14]
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Using Fault Tolerance to Achieve Lower 
min-VDD
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ECC + Faulty Set Remapping Cache, Data Array @ 0.5 VDD
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Many fault-tolerant, voltage-scalable (FTVS) approaches 
lower min-VDD using sophisticated fault tolerance methods

[Gottscho et al. DAC’14]
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Min-VDD can be a misleading metric…



SRAM “Fault Inclusion Property”
NSF Variability Expedition 
“Red Cooper” test chips1
based on ARM Cortex M3

80

1[Lai et al. ASP-DAC’14]

550 mV 525 mV

500 mV 475 mV

[Gottscho et al. DAC’14, TACO’15]
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We can now efficiently store multi-VDD fault maps with low 
overhead... Trade off cache capacity and power dynamically!



Architectural Mechanism

81

• No redundancy – just sacrifice faulty blocks as VDD scales
• # good blocks fall off a “cliff” anyway
• Redundancy can only do so much

• Negligible area overhead

[Gottscho et al. DAC’14, TACO’15]
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Simplicity is key to low overheads



Power/Capacity Scaling

• To adjust data array VDD
– Temporarily stall accesses
– Cache controller finds the blocks that will become 
faulty at next VDD using FM bits
• Flush those blocks that are also Valid & Dirty
• Then set Faulty bits, power gating them

– Adjust VDD, wait for voltage to settle
– Resume operations

• Two general types of runtime policies
– Static (SPCS)
– Dynamic (DPCS)

82

[Gottscho et al. DAC’14, TACO’15]
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Power gate cache blocks that are 
disabled for extra power savings



Static & Dynamic
Power/Capacity Scaling Policies

• Static (SPCS) Policy: Choose single optimal 
VDD at design, test, or boot time

• Dynamic Policy 1 (DPCS1): Based on 
access diversity <----> spatial locality

• Dynamic Policy 2 (DPCS2): Based on 
average access time <----> temporal locality 
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DPCS: Performance OK à lower VDD, etc.
Adapt within and across applications



Evaluation Setup

• 45nm SOI

• 2 system/cache 
configurations 
for L1 & L2

• 3 permitted VDD 
levels

• SPEC CPU2006

84

[Gottscho et al. DAC’14, TACO’15]
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Analytical Results
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Simulation Results
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Summary
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Against baseline 6T SRAM cache @ 1V:

• SPCS: 62% (22%) total cache (system) energy savings

• DPCS: 79% (26%) total cache (system) energy savings

• DPCS: average 2.24 % performance overhead

• 6% area overhead

Power vs. capacity tuning
Useful energy efficiency knob, complements DVFS

Fault Inclusion Property
Exploit it for efficient storage of variation signatures

Opportunistic cache energy savings
Leverage variability without harming reliability or performance

[Gottscho et al. DAC’14, TACO’15]



4. X-Mem
Bonus Slides
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Motivation: Memory is 
Important in Cloud Computing
• Cloud subscribers want to maximize app. performance
• Cloud providers want to minimize CapEx/OpEx given SLAs
• Needs pressure memory hierarchy: characterization is critical
• Memory benchmarking tools don’t meet key requirements
– (A) Access pattern diversity
– (B) Platform variability
– (C) Metric flexibility
– (D) Tool extensibility
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mlc

We propose X-Mem, a new tool!
Project homepage:
nanocad-lab.github.io/X-Mem
Source code:
github.com/Microsoft/X-Mem



Idea: Exploit Memory Process Variation for 
Higher Performance/Watt at Lower Cost
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DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Ph.D. Final Defense    
May 12, 2017



Idea: DIMM Provisioning
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App1 is insensitive to memory performance on this 
system.

Buy cheaper, lower performance DIMMs.

But App2 is sensitive to memory 
performance on this system.

Buy higher performance DIMMs, which 
come at higher cost.

Peak Mem Throughput (MB/s)
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 (A
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Related Work
• My own prior work showed up to 25% power variation 
across DDR3 DIMMs of same specs [Gottscho et al. ESL’12] 

• ViPZonE exploited power variation for energy savings [Bathen
et al. CODES+ISSS’12, Gottscho et al. TC’15]

• A recent study proposed variation-aware tuning of DRAM 
timings [Chandrakesar et al. DATE’14] 
– They found up to 25-35% latency and/or bandwidth improvements possible 
at DRAM level

– Problems: Their approach is not scalable & system-level impact was not 
evaluated

– Recently followed up by AL-DRAM [Lee et al. HPCA’15], which was done 
concurrently with this work

Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 92Ph.D. Final Defense    
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Question: How to evaluate efficacy of 
variation-aware DRAM performance tuning?



Objective

Develop a new software tool 

that can evaluate memory variation-aware solutions 

for improving energy efficiency

and support other uses by the community.
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[Gottscho et al. ISPASS’16]



X-Mem Design
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• Object-oriented C++
• Caches through DRAM
• (A) Access pattern diversity
• (B) Platform variability
• (C) Metric flexibility
• (D) Tool extensibility
• Open-source
• User-friendly CLI & 
documentation

Hardware
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Thread
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main ()
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Functions

Delay-Injected 
Benchmark Kernel 
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Object Owner/
Function Caller

Class Inheritance

Function

Class

X-Mem

Throughput 
Benchmark

Latest SW, documentation, data available @
https://nanocad-lab.github.io/X-Mem

[Gottscho et al. ISPASS’16]



X-Mem Feature: 
(A) Access Pattern Diversity
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1. Access granularity 32, 64, 128, and 256-bit chunk sizes
2. Access types Read or write
3. Access patterns Random, sequential and strided in ± 20-4 chunks
4. Parallelism Multithreaded
5. Page sizes Large and normal
6. Topologies CPU and memory NUMA nodes, core affinity

• (D) Tool Extensibility: Developers can easily add specialized 
patterns through new benchmark kernel functions

6 Degrees of Freedom

[Gottscho et al. ISPASS’16]



X-Mem Feature: 
(B) Platform Abstractions
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1. OS Support Windows, GNU/Linux
2. Architectural 

support
x86, x86-64 with(out) AVX SIMD extensions
ARMv7 with(out) NEON SIMD extensions, ARMv8

• All OS and hardware-specific implementation details are abstracted via
OOP techniques and preprocessor macros

– Includes benchmark kernels, high-resolution timers, power measurement etc.

• Portable SCons-based build system using Python

• (D) Tool Extensibility: Ports to other OSes and architectures possible with 
relatively little effort. Enables apples-to-apples memory hierarchy 
comparisons.

[Gottscho et al. ISPASS’16]



X-Mem Feature: 
(C) Metric Flexibility
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• Performance: X-Mem measures real performance of the 
memory hierarchy as could be seen by an application
– Average aggregate throughput 
– Average unloaded latency
– Average loaded latency

• Power
– Average and peak DRAM power
– Simple software hooks for custom power measurement hardware

• (D) Tool Extensibility: shared-data throughput, percentile 
statistics, variance, data-aware power/performance bookkeeping for 
NVMs etc.

[Gottscho et al. ISPASS’16]



Experimental Platform Details
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[Gottscho et al. ISPASS’16]



• Cloud subscribers should measure and leverage:
• Cache micro-architecture
• System-level memory management

• Understanding these enables improved application 
performance:
• Workload partitioning among threads? 
• Working set size per thread?
• Data access patterns?
• When, where, and how to allocate memory?

Case Study 1: Characterization of the 
Memory Hierarchy for Cloud Subscribers
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Server Platform Insights: 
Interaction of NUMA and Page Size

[Gottscho et al. ISPASS’16]

X-Mem can uncover performance effects that 
only manifest at a system level
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Desktop Platform Insights: 
Memory Hierarchy Landscape

Case Study 1: Characterization of the 
Memory Hierarchy for Cloud Subscribers

[Gottscho et al. ISPASS’16]

X-Mem can quantify various aspects of performance 
for cache and memory architectures



Case Study 1: Characterization of the 
Memory Hierarchy for Cloud Subscribers
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Figure: One thread strided read throughput

Desktop Platform Insights: 
L1 Data Cache Architecture

[Gottscho et al. ISPASS’16]

X-Mem can reveal hidden details of cache and 
memory micro-architectures



• Cloud subscribers can use X-Mem to directly compare 
memory performance of very different platforms
• x86 vs. ARM instruction set
• Virtual vs. physical machines
• Wimpy vs. brawny hardware
• Apples-to-apples results from one tool

• This capability enables subscibers to:
• Choose a target cloud platform that best suits workload characteristics

Case Study 2: Cross-Platform Insights 
for Cloud Subscribers
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Cross-Platform Insights: 
Unloaded Latency of Caches and DRAM

[Gottscho et al. ISPASS’16]

X-Mem can perform apples-to-apples 
comparisons between diverse platforms



Case Study 2: Cross-Platform 
Insights for Cloud Subscribers
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Cross-Platform Insights: 
Main Memory Loaded Latency

[Gottscho et al. ISPASS’16]

X-Mem can perform apples-to-apples 
comparisons between diverse platforms



• Cloud providers can use X-Mem to evaluate the sensitivity of 
system-level performance and energy to memory 
configurations
• Number of DRAM channels, DPC, RPD, channel frequency
• DRAM timing parameters – variation-aware memory tuning?

[Gottscho ESL’12, CODES+ISSS’12, TC’15, Chandrasekar DATE’14, Lee HPCA’15]
• Analyze throughput, unloaded and loaded latency, different access patterns, 
etc.

• This capability enables providers to:
• Optimally configure their platforms for different types of workloads
• Maximize performance/$, minimize TCO, etc.

Case Study 3: Impact of Variation-Aware Tuning 
of Platform Configurations for Cloud Providers
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Server Platform Insights: 
Main Memory Loaded Latency w.r.t. channel freq., DRAM timings

[Gottscho et al. ISPASS’16]

X-Mem can facilitate studies of platform 
configurations and impact of variation-aware tuning



Case Study 3: Impact of Variation-Aware Tuning 
of Platform Configurations for Cloud Providers
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Desktop @ 3.6 GHz Platform

[Gottscho et al. ISPASS’16]



Case Study 3: Impact of Variation-Aware Tuning 
of Platform Configurations for Cloud Providers
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Figure: Sensitivity of unloaded latency (ns/access) w.r.t. 
CPU & DDR3 frequency, DRAM timing, # DDR3 channels

Figure: Impact of 33% slower DRAM timings
on memory-intensive PARSEC benchmarks with w.r.t # threads

Remote access: Up to 45% slower # channels: no impact

CPU underclocked 3X:  50% higher DRAM lat. DRAM timings 33% slower
à up to 12% slower overall

Memory has enough 
BW; benchmarks 
appear latency-bound

Benchmarks are 
memory BW starved; 

relative impact of DRAM 
timings is LESS w/ 

more threads

Takeaway: Don’t bother optimizing DRAM latency until bandwidth problem is solved!
à Depends on relative balance of CPU/mem      à Partly inconsistent with recent work [Lee et al. HPCA’15]

[Gottscho et al. ISPASS’16]

X-Mem shows that variation-aware DRAM perf. tuning makes 
sense only when BW bottlenecks are removed



Summary
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Case Study 1: expose micro-architectural and system-
level details for reverse engineering

Case Study 2: compare memory hierarchies of different 
platforms for software optimization

Case Study 3: tune memory performance using variability 
for specific applications

New flexible tool for characterizing memory systems
Surpasses capabilities of all prior tools

Several key features enable broad usability
(A) Access pattern diversity, (B) Platform variability, 

(C) Metric flexibility, (D) Tool extensibility

Characterization is critical to 
opportunistic memory systems

Data-driven exploitation of performance and power variability

[Gottscho et al. ISPASS’16]



5. Performability
Bonus Slides
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Motivation & Related Work

• Datacenters are growing in size
– Prolific demand for memory
– Increasing DRAM error rates observed in the field

[Li et al. ’10, Schroeder et al. CACM’11, Sridharan & Liberty ‘12, Hwang et al. ASPLOS’12, 
DeBardeleben et al. SELSE’14, Meza et al. DSN’15]

• Memory errors cause significant loss of 
availability and higher TCO [Meza et al. DSN’15, Nikolaou et al. 
MICRO’15]

• …Even corrected errors do! [Meza et al. DSN’15]
– Why? Apparently, performance impacts caused by 
“avalanches” of errors
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Need controlled analysis of memory errors to 
answer the field studies’ call for action



Memory is Important in Cloud
• Main memory in cloud:

– Impacts providers: capital and operational 
expenditures

– Impacts subscribers: application performance

• Deep understanding of memory system can help 
minimize cost-to-benefit ratio for both

• DRAM faults and fault-tolerance techniques 
affect:
– Performance and availability of servers
– Total cost of ownership (TCO) of datacenter
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How to optimally provision, manage, and retire DRAM to minimize 
datacenter TCO while satisfying performance and availability SLAs?

[Meza et al. DSN’15]



DRAM Fault Models
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DRAM Fault Tolerance Techniques Available on 
Current Cloud Servers (Haswell-EP)
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Approach: How to Study Memory
Resiliency in the Real World?

• Faults are considered rare events
–Reliability engineering is a challenge
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Insight

Cost

Accuracy

Time

Model & 
SimulationInjection

Accelerated
Testing

Field Data

Unfortunate tetrahedron: Choose 1 face

Method Advantages Disadvantages
Field data Ground truth, big-data statistics Insight, post-facto analysis

Accelerated testing Accuracy, hardware-in-the-loop Cost, design space

Simulated modeling Transparency, control Time, scalability

Fault injection Tractable, pre-deployment Accuracy, assumptions

Four approaches to 
study resiliency



Measuring Performance Impact of 
Injected Memory Errors
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Input 
Fault Trace
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Error Logs
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Output 
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Steps:

Steps:
Execute Concurrently

X-Mem modified for 
fault injection



Performance of Batch Applications 
with SMI Errors
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Application Thread-Servicing Time
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Application thread-servicing time (ATST)• Modeled impact of corrected errors 
on general application performance

• Model combinations
• System: uniprocessor vs. 
multiprocessor

• Error-reporting scheme: broadcast 
vs. single-issue

• Application type: batch (throughput-
oriented) vs. interactive (latency-
oriented)

• Models are built on derived model of 
application thread-servicing time 
(ATST) in presence of errors



Framework
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Outlook
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•Datacenter operations
• Common/worst-case performance impact of memory 
errors
•Optimal servicing of faulty hardware
• Variation-aware memory provisioning

•System design
• Efficient error-reporting architectures
• Modeling impact of corrected errors on different 
applications

Understanding impact of corrected errors is 
useful for opportunistic memory provisioning



6. SDECC
Bonus Slides
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Motivation: Memory Errors 
are a Major Problem
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• System-level effects from embedded to HPC
– System crashes
– Silent data corruption

• DRAM reliability worsens with density
– Google: 70,000 FIT/Mb in commodity DRAM; 8% of modules 
affected per year;
4% of servers crash per year [Schroeder CACM’11]

– Facebook: 2.5% of machines see DRAM errors per month
[Meza DSN’15]

• SRAM stops working at low voltage
– 6X fault rate measured from 600mV to 525mV [Gottscho TACO’15]

• Flash wears out with usage
– NASA’s Opportunity Mars rover had to reformat its flash in 
2014

• STT-RAM is unpredictable
– Stochastic write & thermal instability [Zhao Microelec. Rel.’12]

• Memory errors will continue to be a challenge!

550 mV

525 mV

[Gottscho TACO’15]



Motivation & Related Work

Historically separate abstractions:
• Error-correcting codes (ECCs)
– e.g., SECDED [Hsiao IBM Journal’70], DECTED, ChipKill
[Dell IBM’97], SEC-DAEC [Dutta et al. VLSI Test’07], VS-ECC 
[Alameldeen et al. ISCA’11]

• System-level fault tolerance techniques
– Checkpoint & recovery
– Mirroring/sparing
– Resource retirement
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Is there room for anything in between?



Number of Candidate Codewords

• Surprisingly small number of candidate codewords for any ECC that corrects t
symbol-wise errors and detects t+1 errors

• We proved that the average number of candidate codewords is:

µ 𝑛, 𝑡, 𝑞 =
5?@5
?@9 𝑊B(2𝑡 + 2)
G
?@9 𝑞 − 1 ?@9 + 1.

• 𝑊B 2𝑡 + 2 : number of min. weight codewords.
• 5?@5

?@9 : number of DUEs distance of exactly 𝑡 + 1 from each min. weight 
codeword.

• G
?@9 𝑞 − 1 ?@9: number of ways to produce a min. weight DUE.

• +1: for the original correct message.
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Lightweight Hash Implementation: SECDED
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Data Recovery Policies 
Comparison
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[Gottscho ‘17]



What if the Lightweight Hash has an Error?

• Outcome 1 (likely): hash does not match 
any candidate, fall back to normal SDECC

• Outcome 2 (unlikely): hash collides with 
wrong candidate, guaranteed miscorrection
• 0.003% chance for 16-bit hash
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Results: DUE Recovery Breakdown with Hashes in Error
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[Gottscho ‘17]

Suppose 20% of all double-chip DUEs 
also have random 16-bit hash error

Then actual DUE recovery rate: 
99.9999% à 97.2767%
Speedup: 15.6%
Avg. util: 97.6%
MTT ind. MCE: 5.5 Mhours



System-Level Benefits
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7. ViFFTo
Bonus Slides
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Motivation

• Memory resiliency is a key challenge for 
embedded edge devices in IoT

• Conventional EDAC techniques are too costly 
and inefficient

• Many embedded systems lack “real” OS w/ 
virtual memory support
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Opportunistic solution for coping with hard 
memory defects could reduce cost of IoT

[Gottscho ‘17]



SDELC Architecture
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Results: Hard Faults
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Test Chip 1 Test Chip 2

sha packed in inst SPM 

[Gottscho ‘17]



SDELC Instruction Recovery Insights
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8. Conclusion and Directions 
for Future Work

Bonus Slides

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 133



Many-Core Checkerboard 
Architecture for the Cloud

• Motivation: Datacenter-on-Chip
• Datacenter & cloud apps are often task-parallel or data-parallel
• But currently, they are deployed on commodity hardware

• General-purpose
• Also designed for other classes of applications

• Given the scale of datacenter services, it makes sense to consider 
customized architectures

• Question: Why do we need many-core processors to share a 
unified address space?
• Corollary: How could we build better datacenter-specialized chips that 
allow for greater scale-out capabilities?

• Not necessarily the wimpy node idea…
• Question: How could we build datacenter-specialized chips given 
the opportunities presented by emerging device and integration 
technology?
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2D Checkerboard Architecture: High-Level
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Minimized data movement:
- On-chip dense scratchpads
- Local access by physically adjacent
compute tiles only
- 4-way arbiter per memory tile
- No cache hierarchy
- No virtual memory
- Thread communication via core-to-core
lightweight message passing, control 
migrations, 
locally-shared memory with up to 4 tiles

Heterogeneous compute tiles:
1) Performance CPU
2) Low power CPU
2) Accelerators
3) Field-programmable fabric
High performance tiles near edges for I/O 
accessibility, 
thermal footprint

Heterogeneous memory tiles:
1) eDRAM
2) STT-RAM
3) 3D X-Point



Dielet Example
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Dense inter-dielet wiring 
pitch
• high-BW, low-latency integration 
of 
disparate technologies

• Simplified dielet I/O
• Highly modular
• Heterogeneous compute and 
memory

• System-on-wafer
• Less compromised than 
SoC

• Denser, faster, lower 
energy than PCB



3D Checkerboard Architecture: 
High-Level
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Programming a Checkerboard 
Architecture

• Overlap-Clustered memory address space
• Compute tiles: can only address adjacent memory tiles
• Memory tiles: can only be accessed by adjacent compute tiles
• Remote memory access is forbidden

• Instead, HW-migrate lightweight threads as needed
• No virtual memory

• Instead, build relocatable programs – each memory tile has a base address 
offset

• In-memory tile access control (e.g., forbid access from West compute tile)
• Allocate memory tiles, which come with adjacent compute tiles

• …instead of compute threads allocating memory, as is normally done
• System Benefits

• Clusters have completely independent memory hierarchies
• Lightweight or eliminated cache coherence – local tiles have shared nearby 
memory

• Reduced global communication
• Many-core scalability for running many task/data-parallel workloads
• “Datacenter-on-chip” – well suited for isolated multi-core VMs in the cloud

Ph.D. Final Defense    
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 138



Programming a Checkerboard 
Architecture: Example
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