
Opportunistic Memory Systems
in Presence of Hardware Variability

Mark William Gottscho

Ph.D. Defense
UCLA Electrical Engineering

Friday, May 12, 2017

Committee:
Puneet Gupta (chair)

Lara Dolecek
Mani Srivastava
Glenn Reinman

Memory is Essential

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 2

3.3M
photos

400 hours of video
uploaded per minute

2.3M Google
searches per second

Hardware Variability in Memory

Hardware variability is particularly
problematic for memories:

1. Smallest and densest device/circuit
features

2. Large fraction of the chip area budget
3. Must permit instability in order to be

rewritable

Memories are particularly susceptible to:
1. Manufacturing defects
2. Parametric variations
3. The operating environment

Memory wall often limits:
1. Energy efficiency
2. System resiliency

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 3

Introduction

[Hennessy & Patterson ‘12]

32nm eDRAM in the IBM Power 7 Processor [ChipWorks]

Better-Than-Worst-Case Design

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 4

Introduction

Time or part

Heterogeneity and
variability exposed
to software

Underdesigned
Hardware

Opportunistic
Software

 Application

 Hardware Abstraction Layer (HAL)

Operating System

 Application

Underdesigned and Opportunistic
Computing machines

[Gupta et al. TCAD’13]

My Framework

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 5

Design
heterogeneity

Manifested
Errors

Variation
signatures,
fault maps

Opportunistic Memory Systems

System software

Applications

Circuits and architecture

Devices and technology

Programmer
Intent

Software
Behavior

Runtime
Objectives

Process
variability

Environ.
variability

Energy-
efficient
&

reliable
operation

Introduction

Opportunistic Memory
Systems exploit & cope with
hardware variations within and
across individual chips for
improved energy efficiency and
resiliency.

Overview of My Dissertation
Part 1: Opportunistically Exploiting Memory Variability

1. ViPZonE: Saving Energy in DRAM Main Memory
with Power Variation-Aware Memory Management

2. DPCS: Saving Energy in SRAM Caches
with Dynamic Power/Capacity Scaling

3. X-Mem: Case Studies on Memory Performance Variability
with the new Extensible Memory Characterization Tool

Part 2: Opportunistically Coping with Memory Errors

4. Performability: Exploring the Impact of Corrected Memory Errors
by quantifying and analytically modeling their performance effects

5. SDECC: Recovering from Detected-but-Uncorrectable Memory Errors
with Software-Defined Error-Correcting Codes

6. ViFFTo: Improving Reliability of Embedded Scratchpad Memories
with Virtualization-Free Fault Tolerance

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 6

Introduction

Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 7

ViPZonE: Saving Energy in DRAM Main
Memory using Power Variation-
Aware Memory Management

Collaborators:

Dr. Luis A. D. Bathen (UC Irvine)
Prof. Nikil Dutt (UC Irvine)

Prof. Alex Nicolau (UC Irvine)
Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., ESL’12
Bathen et al., CODES+ISSS’12
Dutt et al., ASP-DAC’13
Gottscho et al., TC’15
Wanner et al., it’15

Chapter 2

Part 1: Opportunistically Exploiting Memory Variability

Part 1: Opportunistically Exploiting Memory Variability

Summary of ViPZonE

ViPZonE-enabled apps tell OS how to
allocate virtual pages w/ special
variant of malloc() in modified
standard C library

1

2

3

DIMM
Zone 1

DIMM
Zone 2

DIMM
Zone 3

DIMM
Zone N

O
S

Layer

Upper OS Layer [Linux]
Virtual memory management

Application
(ViPZonE aware)

Lower OS Layer [Linux]
DIMM power-variability aware

physical address zoning and page allocation

Memory Controller

ViPZonE
enhanced

DIMM
Power
Profiles

H
ardw

are
Layer

A
pplication
Layer

Application
(Legacy)

Runtime Libraries [GLIBC]

malloc vip_malloc

vip_mmap
syscall

mmap
syscall

ViPZonE-enabled glibc tells OS how
to allocate virtual pages w/ special
variant of mmap() syscall

Kernel’s physical page allocator
attempts to map allocated virtual
page in particular memory device

[Gottscho ESL’12, Bathen CODES+ISSS’12, Dutt ASP-DAC’13, Gottscho TC’15, Wanner it’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 9

Legacy app does not exploit power variability!
ViPZonE app consolidates pages onto low power zones!

Part 1: Opportunistically Exploiting Memory Variability

Summary of ViPZonE
[Gottscho ESL’12, Bathen CODES+ISSS’12, Dutt ASP-DAC’13, Gottscho TC’15, Wanner it’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 10

ViPZonE-enabled apps tell OS how to
allocate virtual pages w/ special
variant of malloc() in modified
standard C library

DIMM
Zone 1

DIMM
Zone 2

DIMM
Zone 3

DIMM
Zone N

O
S

Layer

Upper OS Layer [Linux]
Virtual memory management

Application
(ViPZonE aware)

Lower OS Layer [Linux]
DIMM power-variability aware

physical address zoning and page allocation

Memory Controller

ViPZonE
enhanced

DIMM
Power
Profiles

H
ardw

are
Layer

A
pplication
Layer

Application
(Legacy)

Runtime Libraries [GLIBC]

malloc vip_malloc

vip_mmap
syscall

mmap
syscall

ViPZonE-enabled glibc tells OS how
to allocate virtual pages w/ special
variant of mmap() syscall

Kernel’s physical page allocator
attempts to map allocated virtual
page in particular memory device

• Up to 27.8% energy savings on Intel Sandy Bridge/DDR3
testbed desktop

• No more than 4.8% performance degradation

Use ViPZonE when high memory-level parallelism
or bandwidth is not needed

Physical zoning inherently trades off benefits of striping for resource consolidation
and exploitation of device variations

Opportunistically save energy in today’s systems with no
hardware changes

Through smart management of physical memory variation signatures

DPCS: Saving Energy in SRAM Caches
with Dynamic Power/Capacity Scaling

Collaborators:

Dr. Abbas BanaiyanMofrad (UC Irvine)
Prof. Nikil Dutt (UC Irvine)

Prof. Alex Nicolau (UC Irvine)
Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., DAC’14
Dutt et al., DAC’14
Gottscho et al., TACO’15
Wanner et al., it’15

Chapter 3

Part 1: Opportunistically Exploiting Memory Variability

[Gottscho DAC’14, Dutt DAC’14, Gottscho TACO’15, Wanner it’15]

Summary of DPCS

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 12

Part 1: Opportunistically Exploiting Memory Variability

SRAM
Data Array

Col. Decode

R
ow
 D
ec
od
e

SR
AM

M
et
ad
at
a/
Ta
g
Ar
ra
y

Col
Dec

• Pre-characterize SRAM faults using BIST
• Encode min non-faulty VDD on per-block basis

• Store in modified tag array with 2 extra bits per block

SRAM
Data Array
SRAM

Data Array

Dynamic
Power/Capacity

Scaling

• High performance mode
• Full VDD & cache capacity

• Low power mode
• Reduced VDD, disabled faulty blocks

[Gottscho DAC’14, Dutt DAC’14, Gottscho TACO’15, Wanner it’15]

Summary of DPCS

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 13

Part 1: Opportunistically Exploiting Memory Variability

SRAM
Data Array

Col. Decode

R
ow
 D
ec
od
e

SR
AM

M
et
ad
at
a/
Ta
g
Ar
ra
y

Col
Dec

• Pre-characterize SRAM faults using BIST
• Encode min non-faulty VDD on per-block basis

• Store in modified tag array with 2 extra bits per block

SRAM
Data Array
SRAM

Data Array

Dynamic
Power/Capacity

Scaling

• High performance mode
• Full VDD & cache capacity

• Low power mode
• Reduced VDD, disabled faulty blocks

• Up to 79% total cache energy savings
• Up to 26% total system energy savings
• Average 2.24 % performance overhead
• 6% total cache area overhead

Power vs. capacity tuning
Useful energy efficiency knob, complements DVFS

Fault Inclusion Property
Exploit it for efficient storage of fault maps

Opportunistic approach to energy-efficient caches
Leverage variability without harming reliability or performance

X-Mem: A New Tool for Case Studies on
Memory Performance Variability

Collaborators:

Dr. Sriram Govindan (Microsoft)
Dr. Bikash Sharma (Microsoft)

Dr. Mohammed Shoaib (Microsoft
Research)

Prof. Puneet Gupta (UCLA)

Publications:

Gottscho et al., ISPASS’16

Chapter 4

Part 1: Opportunistically Exploiting Memory Variability

Summary of X-Mem

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 15

Part 1: Opportunistically Exploiting Memory Variability

DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Code at http://nanocad-lab.github.io/X-Mem

[Gottscho ISPASS’16]

Summary of X-Mem

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 16

Part 1: Opportunistically Exploiting Memory Variability

DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Code at http://nanocad-lab.github.io/X-Mem

[Gottscho ISPASS’16]
New flexible tool for characterizing memory systems

Surpasses capabilities of all prior tools

Key Features
(A) Diverse access patterns

(B) Cross-platform
(C) Flexible metrics
(D) Extensible

Three case studies
Explored efficacy of opportunistic variation-aware DRAM latency tuning

Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 17

Performability: The Impact of
Corrected Memory Errors on

Performance

Collaborators:

Dr. Mohammed Shoaib (Microsoft
Research)

Dr. Sriram Govindan (Microsoft)
Dr. Bikash Sharma (Microsoft)

Dr. Di Wang (Microsoft Research)
Prof. Puneet Gupta (UCLA)

Chapter 5

Part 2: Opportunistically Coping with Memory Errors

Publications:

Gottscho et al., CAL’16

How Fault Tolerance Impacts
Cloud Application Performance

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 19

Mirroring Sparing

..zz..

ECC Encode/Decode
Hc’=0

Error Logging Checkpointing Page Retirement

Measured Performance Degradation

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 20

Part 2: Opportunistically Coping with Memory Errors

[Gottscho CAL’16]

Interactive application (web search)

Corrected memory errors can
have severe impact on
application performance!

X-Mem extended: controlled injections of
correctable memory errors in production-
spec cloud server

Queuing-Theoretic Models
for Performance Degradation

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 21

Part 2: Opportunistically Coping with Memory Errors

Batch applications on multiprocessors
with broadcast error handling

Summary of Performability

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 22

Part 2: Opportunistically Coping with Memory Errors

Availability Model

Performance
Models

Benchmarks

Worst case
(errors occur)

Common case
(no errors occur)

Fault Models Fault Tolerance
Techniques

Performance
Metrics

Worst case
(errors occur)

Common case
(no errors occur)

Availability
Metrics

TCO Model and Opt.

Collect Fault Data
From Field and Vendors

Project result

Memory
Provisioning
Decisions

Goal for
cloud provider

Fault
Parameters

Input

C
lo
si
ng
 th
e
lo
op

Recommendations
• Integrate performability models and empirical data into high-level TCO models
• Reduce the overhead of hardware error reporting via architecture/firmware/OS optimizations
• Prevent faults proactively using page retirement and variation-aware memory management

Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 23

Part 2: Opportunistically Coping with Memory Errors

SDECC: Recovering from Detected-but-
Uncorrectable Memory Errors using

Software-Defined Error-Correcting Codes

Collaborators:

Clayton Schoeny (UCLA)
Prof. Lara Dolecek (UCLA)
Prof. Puneet Gupta (UCLA)

Chapter 6

Publications:

Gottscho et al., SELSE’16
Gottscho et al., DSN-W’16
Gottscho et al., 2017 manuscript
submitted and under peer review

Part 2: Opportunistically Coping with Memory Errors

SDECC Concept

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 25

Error-Correcting
Codes

System-Level
Fault Tolerance

Side-information
about data in memory

Software-Defined ECC

No Fault Fault

Corrected
Error (CE)

Detected but
Uncorrectable
Error (DUE)

Miscorrected
Error (MCE)

Undetected
Error (UDE)

SDECC

Forced Panic

Part 2: Opportunistically Coping with Memory Errors

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

Part 2: Opportunistically Coping with Memory Errors

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Candidate Codewords

Example using SECDED
(concept applies generally)

26

Codeword

Hamming
sphere

2-bit DUE with
4 equidistant
candidate
codewords

2-bit DUE with
3 equidistant
candidate
codewords1-bit CE

Each dotted edge
is a single-bit
flip between two n-bit strings

Analysis of Existing ECC Codes
Class of Code Type of Code n k t q

32-bit
SECDED

[Hsiao IBM
Jour. ‘70]

39 32 1 2

32-bit
SECDED

[Davydov
Trans.IT ‘91]

39 32 1 2

64-bit
SECDED

[Hsiao IBM
Jour. ‘70]

72 64 1 2

64-bit
SECDED

[Davydov
Trans.IT ‘91]

72 64 1 2

32-bit
DECTED

- 39 32 2 2

64-bit
DECTED

- 79 64 2 2

128-bit
SSCDSD
(ChipKill-
Correct)

[Kaneda Trans.
Comp ‘82]

36 32 1 16

27Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Class of Code Type of Code n k t q # ways
DUE

32-bit
SECDED

[Hsiao IBM
Jour. ‘70]

39 32 1 2 741

32-bit
SECDED

[Davydov
Trans.IT ‘91]

39 32 1 2 741

64-bit
SECDED

[Hsiao IBM
Jour. ‘70]

72 64 1 2 2556

64-bit
SECDED

[Davydov
Trans.IT ‘91]

72 64 1 2 2556

32-bit
DECTED

- 39 32 2 2 14190

64-bit
DECTED

- 79 64 2 2 79079

128-bit
SSCDSD
(ChipKill-
Correct)

[Kaneda Trans.
Comp ‘82]

36 32 1 16 141750

Class of Code Type of Code n k t q # ways
DUE

Avg. #
C.C.

32-bit
SECDED

[Hsiao IBM
Jour. ‘70]

39 32 1 2 741 12.04

32-bit
SECDED

[Davydov
Trans.IT ‘91]

39 32 1 2 741 9.67

64-bit
SECDED

[Hsiao IBM
Jour. ‘70]

72 64 1 2 2556 20.73

64-bit
SECDED

[Davydov
Trans.IT ‘91]

72 64 1 2 2556 16.62

32-bit
DECTED

- 39 32 2 2 14190 4.12

64-bit
DECTED

- 79 64 2 2 79079 5.40

128-bit
SSCDSD
(ChipKill-
Correct)

[Kaneda Trans.
Comp ‘82]

36 32 1 16 141750 3.38

Class of Code Type of Code n k t q # ways
DUE

Avg. #
C.C.

Baseline Prob.
Success

32-bit
SECDED

[Hsiao IBM
Jour. ‘70]

39 32 1 2 741 12.04 8.50%

32-bit
SECDED

[Davydov
Trans.IT ‘91]

39 32 1 2 741 9.67 11.70%

64-bit
SECDED

[Hsiao IBM
Jour. ‘70]

72 64 1 2 2556 20.73 4.97%

64-bit
SECDED

[Davydov
Trans.IT ‘91]

72 64 1 2 2556 16.62 6.85%

32-bit
DECTED

- 39 32 2 2 14190 4.12 28.20%

64-bit
DECTED

- 79 64 2 2 79079 5.40 20.53%

128-bit
SSCDSD
(ChipKill-
Correct)

[Kaneda Trans.
Comp ‘82]

36 32 1 16 141750 3.38 39.88%

Computing Candidate Codewords

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 28

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

1000 1000 1000 0001
0000 0000 0000 0000

0000 1000 1000 0000

0110 1000 1000 0000
0001 1000 1000 0000
0000 0000 0000 0000

Original Codeword

Received String (2-bit DUE)

Candidate Codewords

…Actual error positions

Perturbed
bit flip

Decoded
bit flipExample using SECDED

Algorithm
For each symbol-wise error position

For each symbol-wise error value
Perturb received string using current position/value
ECC-decode the perturbed string
If decoder produces a codeword

Add codeword to list of candidates

3-bit DUE,
not a candidate!

Exploiting Data Side Information in Memory

Ti
m

e

Word 0: 0x0...00000000

Word 1: 0x0...0000000B

Word 2: 0x0...00000003

Word 3: 0x0...00350001

Word 4: 0x0...00000004

Word 5: 0x0...00000000

Word 6: 0x0...00000003

Word 7: 0x0...00000004

64-bit data
+ 8-bit parity (not shown)

64
B

C
ac

he
 L

in
e

B
ur
st
 o
f 6
4-
bi
t w
or
ds

ov
er
 8
 c
lo
ck
 c
yc
le
s

..00

x0...0

..00

0x0...0

Main Memory

Memory Controller
with (72,64) SECDED ECC

0 0

DUE: candidate codeword changes 0x00 to 0x35

Data types
• uint32_t, double,
pointers, packed arrays,
classes…

Object states
• Assertions, invalid pointers…

Data correlation
• Previously used for compression

[Yang MICRO’00, Alameldeen ‘04, Pekhimenko PACT’12]

29Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

Data Entropy-based Recovery Policy

• Use entropy to determine
most-correlated candidate
codeword
– High entropy detected à
force a panic

– Low entropy detected à
heuristically recover

𝑥": Value of byte i in 64B cache line

Forced Panic

Heuristically Recover

𝑬𝒏𝒕𝒓𝒐𝒑𝒚: 	𝐻 𝑋 = −0𝑃 𝑥" log5 𝑃 𝑥"

67

"89

Panic
Threshold

30Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Architectural Support: SDECC for Main Memory

• Existing DRAM systems
already have most of the
required support for SDECC
• ECC decoder
• Error status registers
• Error-reporting interrupts

• We only need to expose the
corrupted cacheline to
system software!
• Extend functionality of existing error
status registers and interrupt

No performance/energy overhead
in common cases with no DUE!

31Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Overall SDECC Approach

ECC decode No errors or correctable
errors (CEs)?

Probabilistic
Success

Yes

Yes

Calculate cacheline sample
entropy for each CC

Min. entropy above
given threshold?

No

Force panic

Heuristically recover
most likely CC

No (DUE)

Compute candidate
codewords (CCs)

Write back recovered
CC to Penalty BoxSoftware

HardwareRead Penalty Box

Success

32Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

Results: DUE Recovery Breakdown

0.0

69.1 70.3 71.6 74.0 77.5 84.0 85.7
100.0

25.6 25.2 23.7 21.9 20.3 14.5 12.8

0.0 5.3 4.5 4.7 4.1 2.2 1.5 1.5

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Pe
rc
en
t o
f D
U
Es

ECC Code

SDECC Recovery Breakdown

success forced panic induced MCE

• Trace-based fault injection
campaign

• 20 SPEC CPU2006
benchmarks

• RISC-V instruction set
architecture

33Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Results for Approximation-Tolerant Applications

34Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Original image
(jpeg benchmark)

Worst-case corrupted
image (out of 1000) Pixel Delta

- =

[72,64,4]_2
Hsiao SECDED

Pruning Candidates with Lightweight Hashes

Solution: lightweight hashes
• Compute small (4, 8, or 16-bit) universal hash of original
cacheline, store in memory
• If-and-only-if DUE occurs:

• Read out original hash
• Compare it against computed candidate hashes

What if we could prune the list of candidate
codewords to improve chance of recovery?

35Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Lightweight Hash Implementation: ChipKill

36Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

With Hashes

ECC decode No errors or correctable
errors (CEs)?

Yes

Min. entropy above
given threshold?

No

Force panic

Heuristically recover
most likely CC

No (DUE) Write back recovered
CC to Penalty BoxSoftware

HardwareRead Penalty Box

Filter using
cacheline hash

Hash outcome?

Calculate cacheline sample
entropy for each CC

Compute candidate
codewords (CCs)

No CC match

One or more
CC match

Overall SDECC Approach

37Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Probabilistic
Success

Yes
Success

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Results: DUE Recovery Breakdown with Hashes

Lightweight hashes can improve
SDECC recovery rates by orders

of magnitude
2.84E-1

1.22E-1

1.44E-2

1.43E-1

1.95E-2

6.00E-4

1.00E-6

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0
none 4-bit 8-bit none 4-bit 8-bit 16-bit

[72,64,4]_2
SECDED (Hsiao)

[36,32,4]_16 SSCDSD
(ChipKill-correct)

SD
EC
C
 F
ai
lu
re
 R
at
e
(F
ra
ct
io
n
of
 D
U
Es
)

SDECC Failure Rate With Hashes
(Forced Panic or Induced MCE)

Close to DEC
“almost for free”

Close to Double-ChipKill
“almost for free”

38Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

baseline none 4-bit 8-bit 16-bit

SECDED 5% 71.6% 87.8% 98.56% N/A

ChipKill 39.9% 85.7% 98.05% 99.940% 99.9999%

Rates of Successful DUE Recovery

Summary of SDECC

• Reliability Benefits
– Approximation-tolerant applications

• Recover up to 92.4% of DUEs with [72,64,4]_2 SECDED
• As low as 0.1% intolerable NSDC rate

– Approximation-intolerant applications with 16-bit Lightweight Hash
• Recover up to 99.9999% of DUEs with [36,32,4]_16 SSCDSD ChipKill-correct
• MCE rate less than 0.2 ppm of DUEs

• Applications to several domains
– Supercomputing: help reduce checkpoint frequency, saving time/energy
– Approximation-tolerant IoT devices: support error correction at low cost
– Real-time embedded systems: avoid missing deadlines when errors occur

39Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

Part 2: Opportunistically Coping with Memory Errors

[Gottscho SELSE’16, Gottscho DSN-W’16, Gottscho ‘17]

Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 40

ViFFTo: Virtualization-Free Fault
Tolerance for Embedded Scratchpad

Memories at Low Cost

Collaborators:

Irina Alam (UCLA)
Clayton Schoeny (UCLA)
Prof. Lara Dolecek (UCLA)
Prof. Puneet Gupta (UCLA)

Chapter 7

Publications:

Gottscho et al., 2017 manuscript
submitted and under peer review

Part 2: Opportunistically Coping with Memory Errors

ViFFTo Approach

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 42

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

FaultLink: Guarding Against Hard Faults at Link-Time

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 43

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

700 mV750 mV 650 mV

Test chip data SPM

Results: Hard Faults

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 44

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

SDELC: Guarding Against Soft Faults at Run-Time

Software-Defined Error-Localizing Codes (SDELCs)
• Based on novel Ultra-Lightweight Error-Localizing Codes (UL-ELCs)

– Between parity & Hamming code
– Detect & localize 1-bit errors to specific chunk

Software-Defined Recovery using Embedded C Library
• Application-driven data & instruction recovery policies

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 45

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

r = 1

r = 2

r = 3

Parity bitsMessage bits

Results: Soft Faults

70% of single-bit errors can be recovered
at less than half the cost of a standard

Hamming code!

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 46

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Summary of ViFFTo

• ViFFTo opportunistically copes with memory errors in low-
cost IoT devices
– FaultLink can reduce VDD by up to 440 mV
– SDELC can recover 70-90% of single-bit soft faults

• Minimal or no hardware overheads required
– Improve yield (cost), energy, and reliability of IoT devices
– Safest for approximation-tolerant applications

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 47

Part 2: Opportunistically Coping with Memory Errors

[Gottscho ‘17]

Agenda
• Introduction
• Part 1: Exploiting Variability

– ViPZonE
– DPCS
– X-Mem

• Part 2: Coping with Errors
– Performability
– SDECC
– ViFFTo

• Conclusion and Directions for Future Work

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 48

Summary of Dissertation
• Addressing energy efficiency and
resiliency of memories is
essential

• Opportunistic memory systems
can help solve this problem!

• Part 1: ViPZonE, DPCS, X-Mem
– Exploited hardware variability

• Part 2: Performability, SDECC, ViFFTo
– Coped with memory errors

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 49

Conclusion and Directions for Future Work

Open-source code available at https://github.com/nanocad-lab
Data available at http://nanocad.ee.ucla.edu/Main/DownloadForm

Design
heterogeneity

Manifested
Errors

Variation
signatures,
fault maps

Opportunistic Memory Systems

System software

Applications

Circuits and architecture

Devices and technology

Programmer
Intent

Software
Behavior

Runtime
Objectives

Process
variability

Environ.
variability

Energy-
efficient
&

reliable
operation

Directions for Future Work

• Short-term
– Software-Defined ECC with fault models
– Application-specific fault tolerance for hardware accelerators
– Adapting techniques to emerging non-volatile memory devices

• Long-term
– Joint abstractions for heterogeneity and variability
– Checkerboard Architecture

• Vision
– Demand for data + hardware specialization à Opportunistic Memory Systems

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 50

Conclusion and Directions for Future Work

Acknowledgments
• Committee

– Prof. Puneet Gupta (advisor)
– Prof. Lara Dolecek
– Prof. Mani Srivastava
– Prof. Glenn Reinman

• UC Irvine
– Prof. Nikil Dutt
– Prof. Alexandru Nicolau
– Dr. Luis A. D. Bathen
– Dr. Abbas BanaiyanMofrad

• Microsoft
– Dr. Mohammed Shoaib
– Dr. Sriram Govindan
– Dr. Bikash Sharma
– Dr. Di Wang
– Mike Andrewartha
– Mark Santaniello
– Dr. Jie Liu
– Dr. Badriddine Khessib
– Dr. Kushagra Vaid

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 51

• Qualcomm
– Dr. Greg Wright

• UCLA doctoral students
– Clayton Schoeny
– Dr. Fred Sala
– Salma Elmalaki
– Dr. Lucas Wanner

• UCLA NanoCAD Lab
– Irina Alam
– Dr. Shaodi Wang
– Dr. Liangzhen Lai
– Yasmine Badr
– Saptadeep Pal
– Dr. Abde Ali Kagalwalla
– Weiche Wang
– Dr. Rani Ghaida
– Dr. John Lee

• UCLA department staff
– Deeona Columbia
– Sandra Bryant
– Mandy Smith
– Ryo Arreola

• Funding
– Qualcomm Innovation Fellowship
– UCLA Dissertation Year Fellowship
– US National Science Foundation Variability Expedition Grant No. CCF-

1029783
– UCLA Electrical Engineering Department PhD Fellowship

Publications
Mark Gottscho, Irina Alam, Clayton Schoeny, Lara Dolecek, and Puneet Gupta.
“Low-Cost Memory Fault Tolerance for IoT Devices,” 10 pages. Manuscript submitted
and under review, April 2017.

Mark Gottscho, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. “Software-
Defined ECC: Recovery from Detected-but-Uncorrectable Memory Errors,” 14 pages.
Manuscript submitted and under review, April 2017.

Mark Gottscho, Mohammed Shoaib, Sriram Govindan, Bikash Sharma, Di Wang, and
Puneet Gupta. “Measuring the Impact of Memory Errors on Application Performance,”
in IEEE Computer Architecture Letters (CAL), 4 pages. Pre-print available online
August 2016. DOI: 10.1109/LCA.2016.2599513

Mark Gottscho, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. “Software-
Defined Error- Correcting Codes,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 276-
282, Best of SELSE Special Session. Toulouse, France, June 2016. ISBN: 978-1-
5090-3688-2, DOI: 10.1109/DSN-W.2016.67

Mark Gottscho, Sriram Govindan, Bikash Sharma, Mohammed Shoaib, and Puneet
Gupta. “X-Mem: A Cross-Platform and Extensible Memory Characterization Tool for
the Cloud,” in Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 263-273. Uppsala, Sweden, April
2016. ISBN: 978-1-5090-1953-3, DOI: 10.1109/ISPASS.2016.7482101

Mark Gottscho, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. “Software-
Defined Error- Correcting Codes,” in Silicon Errors in Logic – System Effects (SELSE)
workshop, 6 pages. Austin, Texas, USA, March 2016. Best Paper Award.

Qixiang Zhang, Liangzhen Lai, Mark Gottscho, and Puneet Gupta. “Multi-Story
Power Distribution Networks for GPUs,” in IEEE Design, Automation, and Test in
Europe (DATE), pp. 451-456, Dresden, Germany, March 2016. ISBN: 978-3-9815-
3707-9

Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet Gupta.
“DPCS: Dynamic Power/Capacity Scaling for SRAM Caches in the Nanoscale Era,” in
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 12, No. 3,
Article 27, 26 pages. Pre-print available online August 2015, in print October 2015.
EISSN: 1544-3973, DOI: 10.1145/2792982

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 52

Lucas Wanner, Liangzhen Lai, Abbas Rahimi, Mark Gottscho, Pietro Mercati, Chu-Hsiang Huang,
Frederic Sala, Yuvraj Agarwal, Lara Dolecek, Nikil Dutt, Puneet Gupta, Rajesh Gupta, Ranjit Jhala,
Rakesh Kumar, Sorin Lerner, Subhashish Mitra, Alexandru Nicolau, Tajana Simunic Rosing, Mani
B. Srivastava, Steve Swanson, Dennis Sylvester, and Yuanyuan Zhou. “NSF Expedition on
Variability-Aware Software: Recent Results and Contributions,” in De Gruyter Information
Technology (it), Vol. 57, No. 3, pp. 181-198. Invited paper. Pre-print available online June 2015.
DOI: 10.1515/itit-2014-1085

Salma Elmalaki, Mark Gottscho, Puneet Gupta, and Mani Srivastava. “A Case for Battery
Charging-Aware Power Management and Deferrable Task Scheduling,” in USENIX Workshop on
Power-Aware Computing and Systems (HotPower), 6 pages. Bloomfield, Colorado, USA, October
2014.

Mark Gottscho, Abbas BanaiyanMofrad, Nikil Dutt, Alex Nicolau, and Puneet Gupta. “Power /
Capacity Scaling: Energy Savings With Simple Fault-Tolerant Caches,” in Proceedings of the
ACM/IEEE Design Automation Conference (DAC), 6 pages. San Francisco, California, USA, June
2014. ISBN: 978-1-4503-2730-5, DOI: 10.1145/2593069.2593184

Nikil Dutt, Puneet Gupta, Alex Nicolau, Mark Gottscho, and Majid Shoushtari. “Multi-Layer Memory
Resiliency,” in Proceedings of the ACM/IEEE Design Automation Conference (DAC), 6 pages.
Invited paper. San Francisco, California, USA, June 2014. ISBN: 978-1-4503-2730-5, DOI:
10.1145/2593069.2596684

Mark Gottscho, Luis A. D. Bathen, Nikil Dutt, Alex Nicolau, and Puneet Gupta. “ViPZonE:
Hardware Power Variability-Aware Virtual Memory Management for Energy Savings,” in IEEE
Transactions on Computers (TC), Vol. 64, No. 5, pp. 1483-1496. Pre-print available online June
2014, in print May 2015. ISSN: 0018-9340, DOI: 10.1109/TC.2014.2329675

Nikil Dutt, Puneet Gupta, Alex Nicolau, Luis A. D. Bathen, Mark Gottscho. “Variability-Aware
Memory Management for Nanoscale Computing,” in Proceedings of the ACM/IEEE Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 125-132. Invited paper. Yokohama, Japan,
January 2013. ISBN: 978-1-4673-3029-9, ISSN: 2153-6961, DOI: 10.1109/ASPDAC. 2013.6509584

Luis A. D. Bathen, Mark Gottscho, Nikil Dutt, Alex Nicolau, and Puneet Gupta. “ViPZonE: OS-Level
Memory Variability-Aware Physical Address Zoning for Energy Savings,” in Proceedings of the ACM
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 33-42. Tampere, Finland, October 2012. ISBN: 978-1-4503-1426-8, DOI:
10.1145/2380445.2380457

Mark Gottscho, Abde Ali Kagalwalla, and Puneet Gupta. “Power Variability in Contemporary
DRAMs,” in IEEE Embedded Systems Letters (ESL), Vol. 4, No. 2, pp. 37-40. Pre-print available
April 2012, in print June 2012. ISSN: 1943-0663, DOI: 10.1109/LES.2012.2192414

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 53

Questions?

BONUS
SLIDES

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 54

1. Introduction
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 55

Main Memory System

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 56

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

L2$

Shared L3$

L2$ L2$ L2$

Memory Controller(s)

Main
Memory

Main
Memory

Main
Memory

Main
Memory

Breakdown of Main Memory

Memory
Controller

Channels

DIMM (Socketed)

R
a
n
k
(L
o
ck
st
e
p
g
ro
u
p
 o
f
D
R
A
M
s)

DRAM
Chip

Row Buffer

Array

Rows

Columns

Bank
(Independent,
Lockstep within

rank)

Data (8 1T1C Bitcells)

Location

64b DATA (+8b ECC parity)

8b

8b

8b

8b

8b

8b

8b

8b

Channel: CMD, ADDR, CLK, RANK_SEL
(Shared among all ranks and DRAMs in the channel)

8b

Faults in the Memory Hierarchy

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 57

How Much Hardware Variability is There?

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 58

The Variability Problem

�4

Scaling ➞ reduced control over manufacturing

Frequency

Errors

Power

Va
ria

bi
lit

y
(%

)

0

250

500

750

1000

Year
2009 2012 2015 2018 2021 2024

Total Power
Static (Sleep) Power

Variations across parts, time, and ambient conditions
Sleep Power Variability (Room Temperature)

Cortex M3 Sleep Power (Datasheet)

Atmel SAM3U4E Cortex M3
Sleep Mode, 32KHz Slow Oscillator

Room Temperature

Cortex M3 Sleep Power (Measured)

8x Variation

�6

ITRS Projection of Power Variability Measured Sleep Power in 10 Cortex M3 ProcessorsPower variability

�7

Po
w

er
 (W

)

7
7.4
7.8
8.2
8.6

bzip2

Intel Core i5: 12-17%
Balaji, HotPower, '12

Po
w

er
 (W

)

0.4
0.5
0.6
0.7
0.8

read

DDR3: 32%
Gottscho, ESL 4(2), '12

Po
w

er
 (m

W
)

7.6
8.2
8.8
9.4
10

10.6
11.2

Temperature (°C)
-50 0 50 100 150

SAM3U Active: 44%

Po
w

er
 (μ

W
)

0
44
88

132
176
220

Temperature (°C)
20 30 40 50 60

SAM3U Sleep: 14x Measured Power Consumption of
5 Intel Core i5 CPUs [Balaji et al. HotPower’12]

Measured Power Variations
With Respect to Temperature

Individual figures courtesy of
Prof. Lucas Wanner’s UCLA PhD Defense, 2014

2. ViPZonE
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 59

Motivation: Power Variability in
Contemporary DRAMs

[Gottscho et al. ESL’12]

Significant power variations measured
in off-the-shelf DDR3 memory

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 10

Systems could save energy by exploiting
active memory power variability!

Related Work

• Power-aware memory systems
– Page allocation [Lebeck et al. ASPLOS’00]
– Scheduler-based [Delaluz et al. DAC’02]
– Page miss rates [Zhou et al. ASPLOS’04]
– Adaptive architecture [Zheng et al. MICRO’08]
– Independent DRAMs [Ahn et al. CAL’08]

• Variation-aware circuits and systems
– Task scheduling [Wang et al. ICCAD’07]
– Speed binning multicore processors [Sartori et al. ISQED’10]
– Embedded sensing [Wanner et al. HotPower’10, DATE’11]
– Quality adaptation [Pant et al. GLSVLSI’10]
– Variation-tolerant on-chip memories [Meng et al. ISLPED’06,
Liang et al. MICRO’07, Mutyam et al. TC’09]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 61

No prior work on SW-based variation-aware memory
management except VaMV [Bathen et al. DATE’12]

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

D
IM
M
 n

Implementation: Lower OS Layer

ZONE 1

ZONE 2

DMA

DMA32

NORMAL

ZONE n

D
IM
M
 1

D
IM
M
 2

M
C D
IM
M
 1

D
IM
M
 2

M
C

D
IM
M
 n

TOP

Top
DIMM 1

Conventional “ViPZonEs”

16MB

4GB

3

Top
DIMM 2

Top
DIMM n

Physical address zoning

Arranged by increasing DIMM power Arranged by increasing DIMM power

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 62

“ViPZonEs” have different power characteristics because
they are directly mapped to DIMMs exhibiting variation

AREA 1

AREA 2
D
IM
M
 1
 R
0

D
IM
M
 3
 R
0

M
C
 C
ha
nn
el
 A

D
IM
M
 1
 R
1

D
IM
M
 3
 R
1

AREA 3

AREA 4

AREA 5

AREA 6

D
IM
M
 2
 R
0

D
IM
M
 4
 R
0

M
C
 C
ha
nn
el
 B

D
IM
M
 2
 R
1

D
IM
M
 4
 R
1

AREA 7

AREA 8

• Assume DDR3 with:
– 2 channels
– 2 DIMMs per channel
– 2 ranks per DIMM
– All rank capacities equal

• Assume data mapping:
– Data striped channels, DIMMs,
and ranks @ cache line granularity
– Stripe size < page size,
e.g. 64B vs 4KB

DRAM Channel and Rank Interleaving
[Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 63

Conventional interleaving is good for memory-level
parallelism for within-page access patterns

AREA 1

AREA 2
D
IM
M
 1
 R
0

D
IM
M
 3
 R
0

M
C
 C
ha
nn
el
 A

D
IM
M
 1
 R
1

D
IM
M
 3
 R
1

AREA 3

AREA 4

AREA 5

AREA 6

D
IM
M
 2
 R
0

D
IM
M
 4
 R
0

M
C
 C
ha
nn
el
 B

D
IM
M
 2
 R
1

D
IM
M
 4
 R
1

AREA 7

AREA 8

• No striping of adjacent cache
lines
• Single-page access = single-
rank access
• Non-accessed ranks can enter
low power states more often
• BUT: reduced memory-level
parallelism for access to
adjacent cache lines

Interleaving Disabled
[Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 64

Disabling interleaving allows ViPZonE to work but could
impact baseline performance

Implementation: Application Layer

#include <stdlib.h> //Special ViPZonE GLIBC with ViPZonE Linux kernel

//…some code…

void foo(size_t arraySize) {
int *data_ptr = NULL;

/* Possible vip_malloc() flags:
* One of: VIP_WRITE or VIP_READ
* One of: VIP_HIGH_UTIL or VIP_LOW_UTIL
* Programmer is responsible to decide
*/

data_ptr = (int *) vip_malloc(sizeof(int)*arraySize,
VIP_WRITE | VIP_HIGH_UTIL);

//…some write-heavy operations…

vip_free(data_ptr);
}

1

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 65

vip_malloc() abstracts memory power variability
in a user-friendly way

Implementation: Upper OS Layer

ViPZonE-enabled user
app

2

ViPZonE GLIBC

Legacy user app

ViPZonE kernel
Set ViPZonE flags for the virtual memory area

vip_malloc() malloc()

vip_mmap()
syscall

mmap()
syscall

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 66

New apps can exploit ViPZonE,
legacy apps work the same

We are exploring other possible algorithms

Implementation: Lower OS Layer
3

START: Receive allocation
request with power parameters
(write/read, high/low utilization)

Normal
allocation?

Expected
usage?

Success?

Grant
allocation

Success?

yes

high

low

DMA32
required?

Restrict
possible
DIMM

zones to
those <

4096 MB

DMA
required?

Success?

Fail

Attempt
allocation in
lowest write/
read power
DIMM zone

Attempt
allocation in
lowest write/
read power
DIMM zone

with >
THRESHOLD

free space

Attempt DMA
allocation

yes

yes

yes

yes

no

no

yes

Remove this
zone from

consideration

Remove this
zone from

consideration

Zone list
empty?

DIMM zone
list empty?

no

no

yes

yes

no

no

no

Physical page allocator
[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 67

Simplicity à Fast kernel J

Simulation Results: Promising Power Savings

• Simulations show that memory
power savings could be up to
~20%

– Using the 1GB DIMM variability
data shown earlier

0
2
4
6
8
10
12
14
16
18
20

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

ca
nn
ea
l

de
du
p

fa
ce
si
m

fe
rre
t

flu
id
an
im
at
e

fre
qm
in
e

rtv
ie
w

st
re
am
cl
us
te
r

sw
ap
tio
ns
vi
ps

x2
64 av
g

Av
er
ag
e
Po
w
er
 S
av
in
gs
 (%
)

Average Power Savings (%)
– Vanilla Linux vs. ViPZonE

Sim2Core Sim8Core

0
5
10
15
20
25
30

Av
er
ag
e
Po
w
er
 S
av
in
gs
 (%
)

What-If Average Power Savings (%) –
Vanilla Linux vs. ViPZonE

ESL VAR25 VAR50 VAR100

• Memory power savings could
increase to ~30% if future DIMM
variability increases to 100%
• Performance overhead was
expected to be modest

[Bathen et al. CODES+ISSS’12]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 68

Detailed simulations indicate promising power
savings

Measured Testbed Results

69

0"
100"
200"
300"
400"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

8lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"Ex
ec
ut
io
n*
Ti
m
e*
(s
)*

Vanilla"Interleaved" Vanilla" ViPZonE"

0"
1"
2"
3"
4"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

8lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"

Av
g$
M
em

$P
ow

er
$(W

)$

Vanilla"Interleaved" Vanilla" ViPZonE"

0"
100"
200"
300"
400"
500"
600"
700"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

;lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"To

t$M
em

$E
ne
rg
y$
(J
)$

Vanilla"Interleaved" Vanilla" ViPZonE"

0"
300"
600"
900"
1200"
1500"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

:lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"Ex

ec
ut
io
n*
Ti
m
e*
(s
)*

Vanilla"Interleaved" Vanilla" ViPZonE"

0"
0.5"
1"

1.5"
2"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

8lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"Av

g$
M
em

$P
ow

er
$(W

)$
Vanilla"Interleaved" Vanilla" ViPZonE"

0"
500"
1000"
1500"
2000"

bla
cks
cho
les"

bod
ytr
ack
"

can
nea
l"

fac
esi
m"

7lui
dan
ima
te"

fre
qm
ine
"

ray
tra
ce"

sw
apt
ion
s"

To
t$M

em
$E
ne
rg
y$
(J
)$

Vanilla"Interleaved" Vanilla" ViPZonE"

Fast2 Hardware Config Slow2 Hardware Config

[Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Good energy savings for non-bandwidth-
intensive applications

Hypothetical Benefits for NVMs

70

[Gottscho et al. TC’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Idle power is the limiting factor for ViPZonE
on current hardware

Summary

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 71

Benefits on testbed running PARSEC:

• Up to 25.1% memory power savings

• No more than 4.8% performance degradation

• Up to 27.8% memory energy savings

• Up to 50.7% hypothetical memory energy savings if
NVMs used

Use when high memory-level parallelism
or bandwidth not needed

Physical zoning inherently trades off benefits of striping for resource
consolidation and exploitation of device variations

Opportunistically save energy in today’s systems with
no hardware changes

Through smart management of physical memory variation signatures

[Bathen et al. CODES+ISSS’12, Gottscho et al. TC’15]

3. DPCS
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 72

Motivation: Increasing Process Variability
Limits SRAM Voltage Scaling

73

[Wang and Calhoun TVLSI’11]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VIN (V)

VO
UT

 (V
)

Student Version of MATLAB

VT variations é

SRAM BER é
exponentially

Process variability é

VDD ê

SRAM σSNMé

[Gottscho et al. DAC’14]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Limited min-VDD/yield, leakage-dominated
caches, increasing portion of overall power

Related Work

• Rich body of work for fault-tolerant voltage-
scalable (FTVS) cache memories in
nanoscale era
– Leakage reduction (famously: [Powell et al. ISLPED’00, Flautner et
al. ISCA’02])

– Fault tolerant circuits/architecture/ECC [Shirvani &
McCluskey VLSI Test ‘99, Agarwal et al. TVLSI’05, Ansari et al. MICRO’09,
Alameldeen et al. TC’11, etc.]

– Memory power/performance scaling [Fan et al. ‘05, Deng
et al. ASPLOS’11, David et al. ICAC’11, Deng et al. MICRO’12] for
energy proportionality

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 74

DPCS is the first FTVS scheme that efficiently leverages
multiple voltage levels and power gating of disabled blocks,

and supplements DVFS for logic

Question

How to optimize SRAM
for the “best” system-level tradeoffs in
energy, reliability, performance, & area?

75

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

There are many possible fault-tolerant cache
design schemes that can be used!

Amdahl's Law Re-Formulated

76

Save energy via
simple & low-overhead

fault-tolerant, voltage-scalable (FTVS)
SRAM cache architecture

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Using Fault Tolerance to Achieve
Lower min-VDD

Many fault-tolerant, voltage-scalable (FTVS) approaches
lower min-VDD using sophisticated fault tolerance methods

77

SRAM
Data Array

Col. Decode

R
ow
 D
ec
od
e

SRAM
Tag
Array

Col. Dec. Cmp

Baseline Cache @ Nominal VDD – No Fault Tolerance

PURPLE = periphery
@ full VDD
BLUE = SRAM cells
(bright is higher
VDD)

[Gottscho et al. DAC’14]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Using Fault Tolerance to Achieve
Lower min-VDD

78

ECC Cache, Data Array @ 0.7 VDD

SRAM
Data Array

Col. Decode

R
ow
 D
ec
od
e

SRAM
Tag
Array

Col. Dec. Cmp

SR
AM

EC
C
 B
its

ECC

PURPLE = periphery
@ full VDD
BLUE = SRAM cells
(bright is higher
VDD)

Many fault-tolerant, voltage-scalable (FTVS) approaches
lower min-VDD using sophisticated fault tolerance methods

[Gottscho et al. DAC’14]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Using Fault Tolerance to Achieve Lower
min-VDD

79

ECC + Faulty Set Remapping Cache, Data Array @ 0.5 VDD

SRAM
Data Array

Col. Decode

Pr
og
.

R
ow
 D
ec
od
e

SRAM
Tag
Array

Col. Decode Cmp

SR
AM

EC
C
 B
its

ECC

SRAM
Fault
Map
Array

PURPLE = periphery
@ full VDD
BLUE = SRAM cells
(bright is higher
VDD)

Many fault-tolerant, voltage-scalable (FTVS) approaches
lower min-VDD using sophisticated fault tolerance methods

[Gottscho et al. DAC’14]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Min-VDD can be a misleading metric…

SRAM “Fault Inclusion Property”
NSF Variability Expedition
“Red Cooper” test chips1
based on ARM Cortex M3

80

1[Lai et al. ASP-DAC’14]

550 mV 525 mV

500 mV 475 mV

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

We can now efficiently store multi-VDD fault maps with low
overhead... Trade off cache capacity and power dynamically!

Architectural Mechanism

81

• No redundancy – just sacrifice faulty blocks as VDD scales
• # good blocks fall off a “cliff” anyway
• Redundancy can only do so much

• Negligible area overhead

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Simplicity is key to low overheads

Power/Capacity Scaling

• To adjust data array VDD
– Temporarily stall accesses
– Cache controller finds the blocks that will become
faulty at next VDD using FM bits
• Flush those blocks that are also Valid & Dirty
• Then set Faulty bits, power gating them

– Adjust VDD, wait for voltage to settle
– Resume operations

• Two general types of runtime policies
– Static (SPCS)
– Dynamic (DPCS)

82

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Power gate cache blocks that are
disabled for extra power savings

Static & Dynamic
Power/Capacity Scaling Policies

• Static (SPCS) Policy: Choose single optimal
VDD at design, test, or boot time

• Dynamic Policy 1 (DPCS1): Based on
access diversity <----> spatial locality

• Dynamic Policy 2 (DPCS2): Based on
average access time <----> temporal locality

83Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

DPCS: Performance OK à lower VDD, etc.
Adapt within and across applications

Evaluation Setup

• 45nm SOI

• 2 system/cache
configurations
for L1 & L2

• 3 permitted VDD
levels

• SPEC CPU2006

84

[Gottscho et al. DAC’14, TACO’15]

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering

Analytical Results

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 85

Simulation Results

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 86

Summary

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 87

Against baseline 6T SRAM cache @ 1V:

• SPCS: 62% (22%) total cache (system) energy savings

• DPCS: 79% (26%) total cache (system) energy savings

• DPCS: average 2.24 % performance overhead

• 6% area overhead

Power vs. capacity tuning
Useful energy efficiency knob, complements DVFS

Fault Inclusion Property
Exploit it for efficient storage of variation signatures

Opportunistic cache energy savings
Leverage variability without harming reliability or performance

[Gottscho et al. DAC’14, TACO’15]

4. X-Mem
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 88

Motivation: Memory is
Important in Cloud Computing
• Cloud subscribers want to maximize app. performance
• Cloud providers want to minimize CapEx/OpEx given SLAs
• Needs pressure memory hierarchy: characterization is critical
• Memory benchmarking tools don’t meet key requirements
– (A) Access pattern diversity
– (B) Platform variability
– (C) Metric flexibility
– (D) Tool extensibility

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 89

mlc

We propose X-Mem, a new tool!
Project homepage:
nanocad-lab.github.io/X-Mem
Source code:
github.com/Microsoft/X-Mem

Idea: Exploit Memory Process Variation for
Higher Performance/Watt at Lower Cost

Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 90

DIMM Model A DIMM Model B

Binned Binned Performance Performance

Cost

Ph.D. Final Defense
May 12, 2017

Idea: DIMM Provisioning

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 91

App1 is insensitive to memory performance on this
system.

Buy cheaper, lower performance DIMMs.

But App2 is sensitive to memory
performance on this system.

Buy higher performance DIMMs, which
come at higher cost.

Peak Mem Throughput (MB/s)

Ap
p2
 P
er
fo
rm
an
ce
 (A
.U
.)

Peak Mem Throughput (MB/s)

Ap
p1
 P
er
fo
rm
an
ce
 (A
.U
.)

Related Work
• My own prior work showed up to 25% power variation
across DDR3 DIMMs of same specs [Gottscho et al. ESL’12]

• ViPZonE exploited power variation for energy savings [Bathen
et al. CODES+ISSS’12, Gottscho et al. TC’15]

• A recent study proposed variation-aware tuning of DRAM
timings [Chandrakesar et al. DATE’14]
– They found up to 25-35% latency and/or bandwidth improvements possible
at DRAM level

– Problems: Their approach is not scalable & system-level impact was not
evaluated

– Recently followed up by AL-DRAM [Lee et al. HPCA’15], which was done
concurrently with this work

Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 92Ph.D. Final Defense
May 12, 2017

Question: How to evaluate efficacy of
variation-aware DRAM performance tuning?

Objective

Develop a new software tool

that can evaluate memory variation-aware solutions

for improving energy efficiency

and support other uses by the community.

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 93

[Gottscho et al. ISPASS’16]

X-Mem Design

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 94

• Object-oriented C++
• Caches through DRAM
• (A) Access pattern diversity
• (B) Platform variability
• (C) Metric flexibility
• (D) Tool extensibility
• Open-source
• User-friendly CLI &
documentation

Hardware

O
pe
ra
tin
g
Sy
st
em

Load
Worker

Latency
Worker

Windows DRAM
Power Reader (E)

Power
Reader

Memory
Worker

Runnable

Thread

Delay-Injected Latency
Benchmark (E)

Latency
Benchmark

Option Parser Benchmark

Benchmark
ManagerConfigurator

main ()

Timers Benchmark Kernel
Functions

Delay-Injected
Benchmark Kernel
Functions (E)

Object Owner/
Function Caller

Class Inheritance

Function

Class

X-Mem

Throughput
Benchmark

Latest SW, documentation, data available @
https://nanocad-lab.github.io/X-Mem

[Gottscho et al. ISPASS’16]

X-Mem Feature:
(A) Access Pattern Diversity

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 95

1. Access granularity 32, 64, 128, and 256-bit chunk sizes
2. Access types Read or write
3. Access patterns Random, sequential and strided in ± 20-4 chunks
4. Parallelism Multithreaded
5. Page sizes Large and normal
6. Topologies CPU and memory NUMA nodes, core affinity

• (D) Tool Extensibility: Developers can easily add specialized
patterns through new benchmark kernel functions

6 Degrees of Freedom

[Gottscho et al. ISPASS’16]

X-Mem Feature:
(B) Platform Abstractions

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 96

1. OS Support Windows, GNU/Linux
2. Architectural

support
x86, x86-64 with(out) AVX SIMD extensions
ARMv7 with(out) NEON SIMD extensions, ARMv8

• All OS and hardware-specific implementation details are abstracted via
OOP techniques and preprocessor macros

– Includes benchmark kernels, high-resolution timers, power measurement etc.

• Portable SCons-based build system using Python

• (D) Tool Extensibility: Ports to other OSes and architectures possible with
relatively little effort. Enables apples-to-apples memory hierarchy
comparisons.

[Gottscho et al. ISPASS’16]

X-Mem Feature:
(C) Metric Flexibility

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 97

• Performance: X-Mem measures real performance of the
memory hierarchy as could be seen by an application
– Average aggregate throughput
– Average unloaded latency
– Average loaded latency

• Power
– Average and peak DRAM power
– Simple software hooks for custom power measurement hardware

• (D) Tool Extensibility: shared-data throughput, percentile
statistics, variance, data-aware power/performance bookkeeping for
NVMs etc.

[Gottscho et al. ISPASS’16]

Experimental Platform Details

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 98

[Gottscho et al. ISPASS’16]

• Cloud subscribers should measure and leverage:
• Cache micro-architecture
• System-level memory management

• Understanding these enables improved application
performance:
• Workload partitioning among threads?
• Working set size per thread?
• Data access patterns?
• When, where, and how to allocate memory?

Case Study 1: Characterization of the
Memory Hierarchy for Cloud Subscribers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 99

Server Platform Insights:
Interaction of NUMA and Page Size

[Gottscho et al. ISPASS’16]

X-Mem can uncover performance effects that
only manifest at a system level

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 100

Desktop Platform Insights:
Memory Hierarchy Landscape

Case Study 1: Characterization of the
Memory Hierarchy for Cloud Subscribers

[Gottscho et al. ISPASS’16]

X-Mem can quantify various aspects of performance
for cache and memory architectures

Case Study 1: Characterization of the
Memory Hierarchy for Cloud Subscribers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 101

Figure: One thread strided read throughput

Desktop Platform Insights:
L1 Data Cache Architecture

[Gottscho et al. ISPASS’16]

X-Mem can reveal hidden details of cache and
memory micro-architectures

• Cloud subscribers can use X-Mem to directly compare
memory performance of very different platforms
• x86 vs. ARM instruction set
• Virtual vs. physical machines
• Wimpy vs. brawny hardware
• Apples-to-apples results from one tool

• This capability enables subscibers to:
• Choose a target cloud platform that best suits workload characteristics

Case Study 2: Cross-Platform Insights
for Cloud Subscribers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 102

Cross-Platform Insights:
Unloaded Latency of Caches and DRAM

[Gottscho et al. ISPASS’16]

X-Mem can perform apples-to-apples
comparisons between diverse platforms

Case Study 2: Cross-Platform
Insights for Cloud Subscribers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 103

Cross-Platform Insights:
Main Memory Loaded Latency

[Gottscho et al. ISPASS’16]

X-Mem can perform apples-to-apples
comparisons between diverse platforms

• Cloud providers can use X-Mem to evaluate the sensitivity of
system-level performance and energy to memory
configurations
• Number of DRAM channels, DPC, RPD, channel frequency
• DRAM timing parameters – variation-aware memory tuning?

[Gottscho ESL’12, CODES+ISSS’12, TC’15, Chandrasekar DATE’14, Lee HPCA’15]
• Analyze throughput, unloaded and loaded latency, different access patterns,
etc.

• This capability enables providers to:
• Optimally configure their platforms for different types of workloads
• Maximize performance/$, minimize TCO, etc.

Case Study 3: Impact of Variation-Aware Tuning
of Platform Configurations for Cloud Providers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 104

Server Platform Insights:
Main Memory Loaded Latency w.r.t. channel freq., DRAM timings

[Gottscho et al. ISPASS’16]

X-Mem can facilitate studies of platform
configurations and impact of variation-aware tuning

Case Study 3: Impact of Variation-Aware Tuning
of Platform Configurations for Cloud Providers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 105

Desktop @ 3.6 GHz Platform

[Gottscho et al. ISPASS’16]

Case Study 3: Impact of Variation-Aware Tuning
of Platform Configurations for Cloud Providers

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 106

Figure: Sensitivity of unloaded latency (ns/access) w.r.t.
CPU & DDR3 frequency, DRAM timing, # DDR3 channels

Figure: Impact of 33% slower DRAM timings
on memory-intensive PARSEC benchmarks with w.r.t # threads

Remote access: Up to 45% slower # channels: no impact

CPU underclocked 3X: 50% higher DRAM lat. DRAM timings 33% slower
à up to 12% slower overall

Memory has enough
BW; benchmarks
appear latency-bound

Benchmarks are
memory BW starved;

relative impact of DRAM
timings is LESS w/

more threads

Takeaway: Don’t bother optimizing DRAM latency until bandwidth problem is solved!
à Depends on relative balance of CPU/mem à Partly inconsistent with recent work [Lee et al. HPCA’15]

[Gottscho et al. ISPASS’16]

X-Mem shows that variation-aware DRAM perf. tuning makes
sense only when BW bottlenecks are removed

Summary

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 107

Case Study 1: expose micro-architectural and system-
level details for reverse engineering

Case Study 2: compare memory hierarchies of different
platforms for software optimization

Case Study 3: tune memory performance using variability
for specific applications

New flexible tool for characterizing memory systems
Surpasses capabilities of all prior tools

Several key features enable broad usability
(A) Access pattern diversity, (B) Platform variability,

(C) Metric flexibility, (D) Tool extensibility

Characterization is critical to
opportunistic memory systems

Data-driven exploitation of performance and power variability

[Gottscho et al. ISPASS’16]

5. Performability
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 108

Motivation & Related Work

• Datacenters are growing in size
– Prolific demand for memory
– Increasing DRAM error rates observed in the field

[Li et al. ’10, Schroeder et al. CACM’11, Sridharan & Liberty ‘12, Hwang et al. ASPLOS’12,
DeBardeleben et al. SELSE’14, Meza et al. DSN’15]

• Memory errors cause significant loss of
availability and higher TCO [Meza et al. DSN’15, Nikolaou et al.
MICRO’15]

• …Even corrected errors do! [Meza et al. DSN’15]
– Why? Apparently, performance impacts caused by
“avalanches” of errors

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 109

Need controlled analysis of memory errors to
answer the field studies’ call for action

Memory is Important in Cloud
• Main memory in cloud:

– Impacts providers: capital and operational
expenditures

– Impacts subscribers: application performance

• Deep understanding of memory system can help
minimize cost-to-benefit ratio for both

• DRAM faults and fault-tolerance techniques
affect:
– Performance and availability of servers
– Total cost of ownership (TCO) of datacenter

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 110

How to optimally provision, manage, and retire DRAM to minimize
datacenter TCO while satisfying performance and availability SLAs?

[Meza et al. DSN’15]

DRAM Fault Models

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 111

Memory
Controller

Channels

DIMM (Socketed)

R
a
n
k
(L
o
ck
st
e
p
g
ro
u
p
 o
f
D
R
A
M
s)

DRAM
Chip

Row Buffer

Array

Rows

Columns

Bank
(Independent,
Lockstep within

rank)

Data (8 1T1C Bitcells)

Location

64b DATA (+8b ECC parity)

8b

8b

8b

8b

8b

8b

8b

8b

Channel: CMD, ADDR, CLK, RANK_SEL
(Shared among all ranks and DRAMs in the channel)

8b

Granularity
• Socket
• Channel
• Rank
• Chip
• Bank
• Row
• Column
• Multi-bit
• Single-bit

Time
• Permanent
• Intermittent
• Single-events

Space
• Within-pages
• Neighboring
pages

• Across pages

Fault Classification

DRAM Fault Tolerance Techniques Available on
Current Cloud Servers (Haswell-EP)

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 112

Detection Only

Reactive
• Rank sparing
• Channel mirroring
• Bit-steering/device tag

Active
• Demand scrubbing
• Patrol scrubbing

Prevention
• Page retirement (PFA)

When and how to use these techniques?

• Address/command parity
• Data parity

• SECDED ECC
• ChipKill/SDDC ECC

A
bs
tr
ac
tio
ns

Recovery
• Clean page fault (pseudo-
checkpoint) – req. kernel mods

Detection and Correction

Ac
tiv
e
SW

M
gm
t.

H
W
/F
W

M
gm
t.

H
W

C
od
in
g

Approach: How to Study Memory
Resiliency in the Real World?

• Faults are considered rare events
–Reliability engineering is a challenge

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 113

Insight

Cost

Accuracy

Time

Model &
SimulationInjection

Accelerated
Testing

Field Data

Unfortunate tetrahedron: Choose 1 face

Method Advantages Disadvantages
Field data Ground truth, big-data statistics Insight, post-facto analysis

Accelerated testing Accuracy, hardware-in-the-loop Cost, design space

Simulated modeling Transparency, control Time, scalability

Fault injection Tractable, pre-deployment Accuracy, assumptions

Four approaches to
study resiliency

Measuring Performance Impact of
Injected Memory Errors

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 114

Input
Fault Trace

Fault Injection

Trigger Application
Kernel

(Sensitize Faults)

Reference
Application
(No Faults)

Perf. (Application
Defined)

Manifested
Error Logs

1.Virtual à physical address
2.Inject faults

Output
Fault Trace

1.Trigger pings faulty
memory

2.Reference app measures
performance

Steps:

Steps:
Execute Concurrently

X-Mem modified for
fault injection

Performance of Batch Applications
with SMI Errors

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 115

errors/sec - # benchmark copies - benchmark name

Av
er
ag
e
Sl
ow
do
w
n
(%
)

0
40
80
120
160

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

bz
ip
2

m
cf

pe
rlb
en
ch

1 2 4 1 2 4 1 2 4

1 2 4

Application Thread-Servicing Time

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 116

Application thread-servicing time (ATST)• Modeled impact of corrected errors
on general application performance

• Model combinations
• System: uniprocessor vs.
multiprocessor

• Error-reporting scheme: broadcast
vs. single-issue

• Application type: batch (throughput-
oriented) vs. interactive (latency-
oriented)

• Models are built on derived model of
application thread-servicing time
(ATST) in presence of errors

Framework

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 117

Availability Model
Performance Models

Benchmarks

Worst case
(errors occur)

Common case
(no errors occur)

Fault Models Fault Tolerance
Techniques

Performance
Metrics

Worst case
(errors occur)

Common case
(no errors occur)

Availability
Metrics

TCO Model and Opt.

Collect Fault Data
From Field and Vendors

Project focus

Memory
Provisioning
Decisions

Goal for
cloud provider

Fault
Parameters

Input

C
lo
si
ng
 th
e
lo
op

Outlook

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 118

•Datacenter operations
• Common/worst-case performance impact of memory
errors
•Optimal servicing of faulty hardware
• Variation-aware memory provisioning

•System design
• Efficient error-reporting architectures
• Modeling impact of corrected errors on different
applications

Understanding impact of corrected errors is
useful for opportunistic memory provisioning

6. SDECC
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 119

Motivation: Memory Errors
are a Major Problem

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 120

• System-level effects from embedded to HPC
– System crashes
– Silent data corruption

• DRAM reliability worsens with density
– Google: 70,000 FIT/Mb in commodity DRAM; 8% of modules
affected per year;
4% of servers crash per year [Schroeder CACM’11]

– Facebook: 2.5% of machines see DRAM errors per month
[Meza DSN’15]

• SRAM stops working at low voltage
– 6X fault rate measured from 600mV to 525mV [Gottscho TACO’15]

• Flash wears out with usage
– NASA’s Opportunity Mars rover had to reformat its flash in
2014

• STT-RAM is unpredictable
– Stochastic write & thermal instability [Zhao Microelec. Rel.’12]

• Memory errors will continue to be a challenge!

550 mV

525 mV

[Gottscho TACO’15]

Motivation & Related Work

Historically separate abstractions:
• Error-correcting codes (ECCs)
– e.g., SECDED [Hsiao IBM Journal’70], DECTED, ChipKill
[Dell IBM’97], SEC-DAEC [Dutta et al. VLSI Test’07], VS-ECC
[Alameldeen et al. ISCA’11]

• System-level fault tolerance techniques
– Checkpoint & recovery
– Mirroring/sparing
– Resource retirement

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 121

Is there room for anything in between?

Number of Candidate Codewords

• Surprisingly small number of candidate codewords for any ECC that corrects t
symbol-wise errors and detects t+1 errors

• We proved that the average number of candidate codewords is:

µ 𝑛, 𝑡, 𝑞 =
5?@5
?@9 𝑊B(2𝑡 + 2)
G
?@9 𝑞 − 1 ?@9 + 1.

• 𝑊B 2𝑡 + 2 : number of min. weight codewords.
• 5?@5

?@9 : number of DUEs distance of exactly 𝑡 + 1 from each min. weight
codeword.

• G
?@9 𝑞 − 1 ?@9: number of ways to produce a min. weight DUE.

• +1: for the original correct message.

122Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

[Gottscho ‘17]

Lightweight Hash Implementation: SECDED

123Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

[Gottscho ‘17]

Data Recovery Policies
Comparison

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 124

[Gottscho ‘17]

What if the Lightweight Hash has an Error?

• Outcome 1 (likely): hash does not match
any candidate, fall back to normal SDECC

• Outcome 2 (unlikely): hash collides with
wrong candidate, guaranteed miscorrection
• 0.003% chance for 16-bit hash

125Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

[Gottscho ‘17]

Memory
Controller

Channels

DIMM (Socketed)

R
a
n
k
(L
o
ck
st
e
p
g
ro
u
p
 o
f
D
R
A
M
s)

DRAM
Chip

Row Buffer

Array

Rows

Columns

Bank
(Independent,
Lockstep within

rank)

Data (8 1T1C Bitcells)

Location

64b DATA (+8b ECC parity)

8b

8b

8b

8b

8b

8b

8b

8b

Channel: CMD, ADDR, CLK, RANK_SEL
(Shared among all ranks and DRAMs in the channel)

8b

Granularity
• Socket
• Channel
• Rank
• Chip
• Bank
• Row
• Column
• Multi-bit
• Single-bit

Time
• Permanent
• Intermittent
• Single-events

Space
• Within-pages
• Neighboring
pages

• Across pages

Fault Classification

Results: DUE Recovery Breakdown with Hashes in Error

126Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical EngineeringPh.D. Final Defense
May 12, 2017

[Gottscho ‘17]

Suppose 20% of all double-chip DUEs
also have random 16-bit hash error

Then actual DUE recovery rate:
99.9999% à 97.2767%
Speedup: 15.6%
Avg. util: 97.6%
MTT ind. MCE: 5.5 Mhours

System-Level Benefits

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 127

[Gottscho ‘17]

7. ViFFTo
Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 128

Motivation

• Memory resiliency is a key challenge for
embedded edge devices in IoT

• Conventional EDAC techniques are too costly
and inefficient

• Many embedded systems lack “real” OS w/
virtual memory support

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 129

Opportunistic solution for coping with hard
memory defects could reduce cost of IoT

[Gottscho ‘17]

SDELC Architecture

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 130

[Gottscho ‘17]

Results: Hard Faults

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 131

Test Chip 1 Test Chip 2

sha packed in inst SPM

[Gottscho ‘17]

SDELC Instruction Recovery Insights

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 132

[Gottscho ‘17]

R
el
at
iv
e
Fr
eq
ue
nc
y

8. Conclusion and Directions
for Future Work

Bonus Slides

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 133

Many-Core Checkerboard
Architecture for the Cloud

• Motivation: Datacenter-on-Chip
• Datacenter & cloud apps are often task-parallel or data-parallel
• But currently, they are deployed on commodity hardware

• General-purpose
• Also designed for other classes of applications

• Given the scale of datacenter services, it makes sense to consider
customized architectures

• Question: Why do we need many-core processors to share a
unified address space?
• Corollary: How could we build better datacenter-specialized chips that
allow for greater scale-out capabilities?

• Not necessarily the wimpy node idea…
• Question: How could we build datacenter-specialized chips given
the opportunities presented by emerging device and integration
technology?

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 134

2D Checkerboard Architecture: High-Level

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 135

Minimized data movement:
- On-chip dense scratchpads
- Local access by physically adjacent
compute tiles only
- 4-way arbiter per memory tile
- No cache hierarchy
- No virtual memory
- Thread communication via core-to-core
lightweight message passing, control
migrations,
locally-shared memory with up to 4 tiles

Heterogeneous compute tiles:
1) Performance CPU
2) Low power CPU
2) Accelerators
3) Field-programmable fabric
High performance tiles near edges for I/O
accessibility,
thermal footprint

Heterogeneous memory tiles:
1) eDRAM
2) STT-RAM
3) 3D X-Point

Dielet Example

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 136

Dense inter-dielet wiring
pitch
• high-BW, low-latency integration
of
disparate technologies

• Simplified dielet I/O
• Highly modular
• Heterogeneous compute and
memory

• System-on-wafer
• Less compromised than
SoC

• Denser, faster, lower
energy than PCB

3D Checkerboard Architecture:
High-Level

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 137

Programming a Checkerboard
Architecture

• Overlap-Clustered memory address space
• Compute tiles: can only address adjacent memory tiles
• Memory tiles: can only be accessed by adjacent compute tiles
• Remote memory access is forbidden

• Instead, HW-migrate lightweight threads as needed
• No virtual memory

• Instead, build relocatable programs – each memory tile has a base address
offset

• In-memory tile access control (e.g., forbid access from West compute tile)
• Allocate memory tiles, which come with adjacent compute tiles

• …instead of compute threads allocating memory, as is normally done
• System Benefits

• Clusters have completely independent memory hierarchies
• Lightweight or eliminated cache coherence – local tiles have shared nearby
memory

• Reduced global communication
• Many-core scalability for running many task/data-parallel workloads
• “Datacenter-on-chip” – well suited for isolated multi-core VMs in the cloud

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 138

Programming a Checkerboard
Architecture: Example

Ph.D. Final Defense
May 12, 2017 Mark Gottscho <mgottscho@ucla.edu> -- UCLA Electrical Engineering 139

