Intrusive Routing for Improved Standard Cell Pin Access

Vishesh Dokania

Prof. Puneet Gupta

NanoCAD Lab

Department of Electrical Engineering, UCLA

MS Project Presentation

March 10, 2017

Motivation

- Standard-cell Routability critical physical design objective
 - Dictates area utilization, timing and signal integrity, DFM considerations
- Pin Access \rightarrow key bottleneck
 - Device scaling \rightarrow standard cell design complexity \downarrow , design rules \uparrow
 - Pin polygon size \downarrow , #covering tracks \downarrow
 - Existing cell internal routing shapes \rightarrow blockage in one or more directions
 - Larger design does not indicate better pin access
- Ideal internal routing configuration → still agnostic of true local congestion in placed cells

Pin Access Considerations

• Device scaling causes #tracks covering pin shape to decrease

M-K. Hsu et al., "Design and manufacturing process co-optimization in nano-technology", *IEEE/ACM Int. Conf. Comp.-Aided Des. (ICCAD)*, pp. 574-581, Nov. 2014.

• Existing nets might make a pin inaccessible due to track congestion

X. Xu, B. Yu, J-R. Gao, C-L. Hsu, and D. Z. Pan, "PARR: Pin-Access Planning and Regular Routing for Self-Aligned Double Patterning", *ACM Trans. Des. Automation of Electronic Syst. (TODAES)*, vol. 21, no. 3, Jul. 2016.

Approaches

- Complete intra-cell routing rip-up
 - Rip-up all internal metal layers, retain contacts, minimum-size M1 landing pads.
 - Communicate connectivity information to commercial router
 - Isolated I/O pin shapes
 - Internal nets
 - Near-optimal approach but inflated problem size
- Congestion-based selective intra-cell routing rip-

up

- Recognize areas with high congestion and/or routing violations
- Selectively rip-up nets of specific std. cells
- Multiple cell pin-access configuration swap
 - Maintain multiple variants per cell based on pin access
 - Heuristically swap

Tool Flow Overview

Library Modifications

- Primarily LEF and GDS edits for cell metal rip-up (CMR)
 - Pin-wise metal layer shapes available in LEF and GDS
 - Selectively parse and rip-up
- Communicating connectivity to the router:
 - Cell I/O signal shapes:
 - Split pin shapes into individual ports
 - LEF property: MUSTJOINALLPORTS
 - Cell internal nets 3 options
 - MUSTJOIN pins internal pins creating implicit nets for the router
 - Add new normal internal pins, normal nets to the DEF comformity issue with netlist, Liberty
 - Virtual Pins not supported

Experimental Setup

- Implemented <u>basic</u> version of proposed CMR approach for methodology validation
 - Partially rip-up internal nets of all cells p-CMR
 - Rip-up all I/O pin shapes
 - Retain all original internal shapes
- Critical added constraint track misalignment
 - Default M1 pads cover contacts uneven spacing
- Extend M1 landing pads atleast one M2 track should align
 - Simple approach extend everything in one direction
 - If spacing violation, don't extend

Results

Benchmarks from IWLS 2005
Benchmark Suite

- Heuristic utilization sweep to find minimum design area
 - Confidence interval of $\pm 0.1\%$
- Routing-constrained designs top routing layer chosen accordingly
- 50 DRC violation threshold
- Comparable utilization results.

EVALUATED BENCHMARK DESIGNS

Design	Size (#Gates)	Top Routing Layer
cortexm0ds	9k	M4
aes_cipher_top	14k	M4
fpu	33k	M3

Future Work

• Basic framework validated \rightarrow extend to full implementation for real comparison

• Full CMR based on MUSTJOIN pins

- Workaround for internal 'floating net' DRC violation
- Full CMR based on new DEF nets
 - Workaround for netlist/Liberty mismatch
- Smart M1 landing pad extensions
 - If spacing violation, extend in another direction
- Congestion/violation based CMR
 - Simple approach: find default routing violations, swap with CMR cell, retry
- Cell variant swapping
 - Different pin access configurations

Thank You!

References

- 1. M. Cho, K. Lu, K. Yuan, and D. Z. Pan, "BoxRouter 2.0: architecture and implementation of a hybrid and robust global router", *IEEE/ACM Int. Conf. Comp.-Aided Des. (ICCAD)*, Nov. 2007.
- 2. M-K. Hsu et al., "Design and manufacturing process co-optimization in nano-technology", *IEEE/ACM Int. Conf. Comp.-Aided Des. (ICCAD)*, pp. 574-581, Nov. 2014.
- 3. X. Qiu and M. Marek-Sadowska, "Can pin access limit the footprint scaling?", *Des. Automation Conf. (DAC)*, Jun. 2012.
- 4. X. Xu, B. Yu, J-R. Gao, C-L. Hsu, and D. Z. Pan, "PARR: Pin-Access Planning and Regular Routing for Self-Aligned Double Patterning", *ACM Trans. Des. Automation of Electronic Syst. (TODAES)*, vol. 21, no. 3, Jul. 2016.
- 5. T. Taghavi et al., "New placement prediction and mitigation techniques for local routing congestion", *IEEE/ACM Int. Conf. Comp.-Aided Des. (ICCAD)*, Nov. 2010.
- 6. W. A. Dees, Jr. and P. G. Karger, "Automated rip-up and reroute techniques", *Des. Automation Conf. (DAC)*, pp. 432-439, 1982.
- 7. C. J. Alpert et al., "What makes a design difficult to route", Int. Symp. Physical Design (ISPD), pp. 7-12, Mar. 2010.