
Leon 3 Processor
Delay Variability Emulator

Nan Lyu

Project Background and Motivation

Modern microelectronics have increasing variations in performance,
power and reliability.

Causes:

• Manufacturing:

Material properties and scaling of semiconductor devices

Worsen as critical dimension shrinks to atomic scale

Project Background and Motivation

Modern microelectronics have increasing variations in performance,
power and reliability.

Causes:

• Manufacturing

• Environment

VDD: 10% floating; Temperature: -30 °C ~ 175 °C

Delay influenced by resistance and driving strength

Project Background and Motivation

Modern microelectronics have increasing variations in performance,
power and reliability.

Causes:

• Manufacturing

• Environment

• Aging: Wear-out, performance decrease as usage time increases

Project Background and Motivation

The variation causes problems to both the hardware and software
designer

Hardware designer

Must estimate the variation conservatively

Over design to guarantee performance

Software designer

Assumes the performance limit as labeled

A waste of performance

Project Background and Motivation

Aim of the project

To develop a delay variability emulator for Leon 3 processor:

- Emulate variability through delay insertion

- Show the impact of delay variability on performance

- Hopefully can be used for hardware-aware software
development experiments

Framework

Leon 3 processor
on Altera FPGA

Quartus II
Implement Processor

debug monitor

Delay
insertion

Run benchmarks
Control delay

Results & Info

Performance
Impact

Leon 3 processor: Basic info

- Developed by COBHAM GAISLER

- Free licensed and open source embedded processor

- Consist of multiple soft IP cores (VHDL)

- Based on SPARC architecture (not popular now)

Leon 3 processor: Architecture

Configuration:

• Enable DSU and FPU

• Include separate cache

• Enable MMU (TLB)

• Enable branch prediction

Delay insertion and control

Delay insertion flow

Insert delay in design source file
 Portability
 Flexibility
 Clear look of location inserted
 Some extra delay

Insert delay after mapping in netlist
 Small extra delay
 Vary in different software
 Difficult to implement
 Poor flexibility

Delay element

lcell: one logic cell causes
~0.4 ns delay

…… Selector

OutputInput

Enable

delay_sel

Delay controller and General purpose register

Delay inserted in multiple paths

Delay Element
sel en

Delay Element
sel en

Delay Element
sel en

Memory

General purpose
register

Delay controller

Choosing delay insertion paths

Hardware perspective

• Post-mapping timing analysis

• Select several paths with
smallest timing slack (setup
time)

• Choose a signal in the path

Better for highest working clock
rate

Architecture perspective

• Select a unit

• Choose a signal inside the unit

Better for delay impact in different
units

Choosing delay insertion paths

Hardware perspective Architecture perspective

Combine delay with original Leon 3 design
Constraint
• GPREG should be instantiated in top level design (uses memory bus in top level)

Methodology
• Instantiate wrapper modules (empty) for delay elements and delay controllers in top level,

set as design partitions, and connect with GPREG

• Create ports in modules in each level from the top until reaching the desired insertion unit
(two ports for each delay path)

• Connect specific signal with the ports, and connect ports with delay elements

• Import hard macro (logic lock region) into the design partition

Flexibility
• Manually create all the ports needed for several units at one time

• The only thing to do is to change the port connection in top level

Combine delay with original Leon 3 design

Delay scattered on the
chip plan, which causes an
extra base delay in the
delay paths, and that may
leads to a decrease in
performance even if delay
is disabled

Performance evaluation

GRMON: Leon 3 processor debug monitor

• Processor Info

• Load program and run

• Standard I/O

• Write/Read memory

• Trace buffer

Performance evaluation

Benchmarks (use sparc-gcc cross compiler)

• Stanford: A suite of benchmarks that are relatively short, both in
program size and execution time. (Non-floating & Floating)

• Dhrystone: A synthetic computing benchmark program intended to
be representative of system (integer) programming

• Coremark: A benchmark that aims to measure the performance of
CPU used in embedded systems

• Stream: A simple synthetic benchmark program that measures
sustainable memory bandwidth

Results
Type 1: Performance impact of different delay paths on different benchmarks,
when delay is inserted in memory control module

Created automated
batch and python script
for running benchmark
16*80*5 times and
extracting results.

Results

Error Type:

• Illegal instruction (‘unimp’ or unknown opcode)

• Memory address not aligned (‘ld’ and ‘st’, caused by incorrect
instruction content)

• Data store error (write buffer error)

• Hang (output unreadable code)

• Instruction/Data access exception (Error during instruction fetch and
data load)

Results

Results
Type 2: Performance impact of transient delay insertion, when delay is inserted in
memory control module

Create a new thread in Stanford benchmark to randomly insert delay for a short
period in parallel with the benchmark main thread

Connect GPREG output with LEDs to show delay value. LEDs will blink during the
program runtime if the program fortunately exits normally; otherwise the LEDs will
stuck at light on with a program error.

Results

Benchmark is run 100 times for each data point

Results
Type 3: Performance impact of delay insertion, when delay is inserted in 7-stage
pipeline

Fetch stage (branch controller)

Error type: Hang for a long time, then end up with error

Execution stage

Error type: Data store error

Decode stage

Error type: Data store error

Results
Further thoughts..

Execution time = IC x CPI x CT

Delay insertion can have influence on:

Cycle time: A high clock frequency can lead to program running incorrectly

Instruction count: Mess up the speculation units in processor to increase
instruction count (branch prediction, prefetching, ..)

- Speculation units needed (Leon 3 is simple)

- Detailed program trace needed for analysis (not available in GRMON)

Conclusion

What has been done

• Implemented the delay variability emulation flow for Leon 3 processor

• Obtained and analyzed several performance experiments results

What can be done further

• Insert delay in more units

• Use a more sophisticated processor

• With more support from GRMON (may need a paid license), precise impact can
be studied from detailed program trace (trace buffer only 4KB now)

Thank you

