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Motivation: Worsening Process Variability v

* |C variability is increasing due to technology scaling

e Hardware over-design costs are worsening (performance, power,
energy, etc.)

* [dea: Flexible hardware/software interface, expose some
variability/heterogeneity to software, restore scaling benefits

* “Underdesigned and Opportunistic Computing (UnO)”

* Can memory variations be exploited?
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DRAM Power Measurement Setup
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Measured Power Variability in DRAMSs
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Memory Power Variability is Significant v

e Significant power variations in |
Incremental Memory Power in 2GB DIMMs

DDR3 memory 0.9 I
— Up to ~20% var. in 19 1GB DIMMs 08 B incremental Read
— Up to ¥55% var. in 8 2GB DIMMs
— Up to ~50% “usable” variability 0.7 \34% ]

* e.g. incremental power over idle 0.6 \¢

Systems could save energy by exploiting active
memory power variability!



ViPZonE Architecture: App Flags With OS Support v

* Apps pass flags to the OS indicating their memory behavior
— Via special variants of standard system calls

* OS back-end makes power variability-aware allocations using the flags
— Low-level page allocator uses “zoned” physical address space for each DIMM
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Implementation: Linux Kernel, GLIBC on x86-64 v

* Application layer: ViPZonE-enabled apps Approach

top-down

— App flags indicate memory power preferences to the OS

BY - Upper OS layer: modified GLIBC 2.15

— New vip_malloc() function

H * Lower OS layer: modified Linux 3.2 kernel
— “Zoning by DIMM”
— Power variability-aware physical page allocator
— New vip_mmap() syscall

» System hardware assumptions
— x86-64 architecture (not a requirement for general
applicability)
— DIMM channel & rank interleaving disabled

* Not necessarily a performance loss, but gives memory power savings
— Multiple DIMMs with known power consumption

Our approach works on off-the-shelf hardware



Implementation: Application Layer v

#1include <stdlib.h> //Special ViPZonE GLIBC with ViPZonE Linux kernel
//..some code..

volid foo(size_t arraySize) {
int *data_ptr = NULL;

/* Possible vip_malloc() flags:
* One of: VIP_WRITE or VIP_READ
* One of: VIP_HIGH_UTIL or VIP_LOW_UTIL
* Programmer 1is responsible to decide
*/
data_ptr = (int *) vip_malloc(sizeof(int)*arraySize,
VIP_WRITE | VIP_HIGH UTIL);

//..some write-heavy operations..

vip_malloc() abstracts power variability in a user-friendly

way



1 Implementation: Upper OS Layer v

ViPZonE-enabled user

Legacy user a
app gacy PP

vip_malloc()

ViPZonE GLIBC

vip_mmap() mmap()
syscall syscall

ViPZonE kernel

Set ViPZonE flags for the VM area
If none provided, use default of READ/LO

New apps can exploit ViPZonE, legacy apps work the same




Aside: Channel & Rank Interleaving ON v

AREA 1

* Using the testbed as example:
— 2 channels
— 2 DIMMs per channel
— 2 ranks per DIMM
— All rank capacities equal

* Mappings use this scheme:

— Data striped (interleaved) across all
channels, DIMMs, and ranks
— Stripe size is << size of DIMM or rank
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Aside: Channel & Rank Interleaving OFF (ViPZonE) v

AREA 1

AREA 2 o
* No striping
— If we access only 1 DIMM, the others
will be idle (low power)

* I[f we want benefits of multi-

channel bandwidth
— Need to access different regions of
address space in parallel
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B Implementation: Lower OS Layer

START: Receive allocation zone from
request with power parameters consideration
(write/read, high/low utilization)
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=1 Implementation: Lower OS Layer v

Physical address partitioning (zoning)
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—_— —_—

16MB

DMA32

4GB

oy — =N =
Y »
NORMAL
ZONE n
Top
DIMM n [

Our zones have different power characteristics by directly
mapping them to DIMMs




Simulation Results: Promising Power Savings v

e Simulation showed that memory * Memory power savings could increase
power savings could be up to ~20% to ~30% if DIMM variability increases to
— Using the 1GB DIMM variability 100%
data shown earlier * Performance overhead should be
modest
Average Power Savings (%) What-If Average Power Savings (%) — Vanilla
— Vanilla Linux vs. ViPZonE Linux vs. ViPZonE
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Average Power Savings (%)

Average Power Savings (%)

Detailed simulations indicate promising power savings
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Measured Testbed Results
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More Measured Testbed Results
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(a) Fast2 Memory Energy, idle energy removed (b) Slow2 Memory Energy, idle energy removed
| Metric | Value (Benchmark) | Metric | Value (Benchmark) |
Max memory power savings, Fast2 config | 25.13% (facesim) Max memory power savings, Slow2 config 11.79% (canneal)
Max execution time overhead, Fast2 config | 4.80% (canneal) Max execution time overhead, Slow2 config | 1.16% (canneal)
Max memory energy savings, Fast2 config | 27.80% (facesim) Max memory energy savings, Slow2 config | 10.77% (canneal)
Max memory energy savings, Fast2 config | 46.55% (facesim) Max memory energy savings, Slow2 config | 50.69% (canneal)
estimated, “NVM” (no idle power) estimated, “NVM” (no idle power)
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Summary

* VViPZonE can reduce energy consumption in systems with
many variable memory devices (e.g., servers and desktops)
* This can be applied in today’s systems with minimal
hardware changes

* ViPZonE enables app-level exploitation of variability with
minimal programming changes

* On-going work aims to improve OS sophistication with
bookkeeping

— Kernel could automatically promote hot pages to low power, etc.

— App flags become “hints” rather than strict guidelines
* Leaves optimal memory scheduling policy to OS

* Results through simulation & real testbed demonstrate good
energy savings

* Underdesigned and Opportunistic Computing is a promising
direction for further research



