ViPZonE: Exploiting DRAM Power Variability
for Energy Savings in Linux x86-64

Mark Gottscho
M.S. Project Report

Advised by Dr. Puneet Gupta
NanoCAD Lab, UCLA Electrical Engineering

UCI Research Collaborators: Dr. Nikil Dutt, Dr. Alex Nicolau, Dr. Luis A. D. Bathen

March 5, 2014

Motivation: Worsening Process Variability v

* |C variability is increasing due to technology scaling

e Hardware over-design costs are worsening (performance, power,
energy, etc.)

* [dea: Flexible hardware/software interface, expose some
variability/heterogeneity to software, restore scaling benefits

* “Underdesigned and Opportunistic Computing (UnO)”

* Can memory variations be exploited?

Performance

T Application |f RSP Application
nominal
scal:r‘?lqw__;_;_";, e — Opportunistic
\\ ------ Software
over.designed Heterogeneity and | ynderdesigned
scaling variability exposed | Hardware
to software
130nm 90nm 65nm 45nm 32nm 22nm post-silicon Time or part

Technology Generation

DRAM Power Measurement Setup

. CCCCCCCCC
DIMM /
1 [\ 1

ttttttttt

OOOOOOOOOOO

DDR3 Memory System

DRAM (k Banks)

| |
K |
7 |
0

DRAM
Device
Single Bank
Storage Array Storagg Cell
//
TS
\ .
Row Location
Access |™ B K
C_— 1 |

Column Access Column (b bits)

] Memory Channels

]

/

\

Memory ControIIerJ

d DIMMs

1 or 2 Ranks
(8 DRAMSs ea.)

Instrumented DIMMs in the testbed

Measured Power Variability in DRAMSs

Write 1 over 0
Write 1 over 1
Write 0 over 0

290.50
12

=
= Write 0 over 1
L4
g Read 1
j=» Read 0
(=]
Idle
0 50 100 150 200 250 300 350
Normalized Power (%)
B Write 2.33
BERead VI1S1M1d
Oldle
V2S2M1la

2

3 2.60

§ V3S3Mla 261

2.47
[T T 2.04
0 1 2 3 4
Max Variation from Temperature (%)

B Write

B Read

Oldle V1S1M1,1GB (5)
Vendor 1,1 GB (12)

Vendor Means, 1 GB (4)

Overall, 1 GB (19)

V1S1M1,2 GBvs 1 GB (8)

Category (Sample size)

20
Max Variation (%)

:Writie S1M1

Rea V1S1Mla =).554
V1S1Mlc ‘M
V1SiM1d
V1S1Mle

V1S1M1 (2 GB)a

V1S1M1 (2 GB)b

V1S1M1 (2 GB)c

V1S1M2a
V1S1M2b
V1SUM3a

vasaMia ————0400 >

vaszMib ————J0405 >0

vessita ———=rg350=P>"1
VISSMIb ————g35s = 0207 |
V3SIMIe ————9361_ P> | |
VISIMza ———— 9364 007 | |
VISSMED ————70367 70575 ||
VSUMIa ————70417 0576 | |
V4SUM1b -

Vendor, Supplier, Model

V4SUM1c

Memory Power Variability is Significant v

e Significant power variations in |
Incremental Memory Power in 2GB DIMMs

DDR3 memory 0.9 I
— Up to ~20% var. in 19 1GB DIMMs 08 B incremental Read
— Up to ¥55% var. in 8 2GB DIMMs
— Up to ~50% “usable” variability 0.7 \34%]

* e.g. incremental power over idle 0.6 \¢

Systems could save energy by exploiting active
memory power variability!

ViPZonE Architecture: App Flags With OS Support v

* Apps pass flags to the OS indicating their memory behavior
— Via special variants of standard system calls

* OS back-end makes power variability-aware allocations using the flags
— Low-level page allocator uses “zoned” physical address space for each DIMM

Application Layer

Source code flags

B ViPZonE
Future work

|

|
uoneolddy

)
~ -

Upper OS Layer
Special GLIBC library, kernel system calls

Lower OS Layer
DIMM power variability-aware zoning and allocation

DIMM

Power
Profiles
P—

alempJieH

Implementation: Linux Kernel, GLIBC on x86-64 v

* Application layer: ViPZonE-enabled apps Approach

top-down

— App flags indicate memory power preferences to the OS

BY - Upper OS layer: modified GLIBC 2.15

— New vip_malloc() function

H * Lower OS layer: modified Linux 3.2 kernel
— “Zoning by DIMM”
— Power variability-aware physical page allocator
— New vip_mmap() syscall

» System hardware assumptions
— x86-64 architecture (not a requirement for general
applicability)
— DIMM channel & rank interleaving disabled

* Not necessarily a performance loss, but gives memory power savings
— Multiple DIMMs with known power consumption

Our approach works on off-the-shelf hardware

Implementation: Application Layer v

#1include <stdlib.h> //Special ViPZonE GLIBC with ViPZonE Linux kernel
//..some code..

volid foo(size_t arraySize) {
int *data_ptr = NULL;

/* Possible vip_malloc() flags:
* One of: VIP_WRITE or VIP_READ
* One of: VIP_HIGH_UTIL or VIP_LOW_UTIL
* Programmer 1is responsible to decide
*/
data_ptr = (int *) vip_malloc(sizeof(int)*arraySize,
VIP_WRITE | VIP_HIGH UTIL);

//..some write-heavy operations..

vip_malloc() abstracts power variability in a user-friendly

way

1 Implementation: Upper OS Layer v

ViPZonE-enabled user

Legacy user a
app gacy PP

vip_malloc()

ViPZonE GLIBC

vip_mmap() mmap()
syscall syscall

ViPZonE kernel

Set ViPZonE flags for the VM area
If none provided, use default of READ/LO

New apps can exploit ViPZonE, legacy apps work the same

Aside: Channel & Rank Interleaving ON v

AREA 1

* Using the testbed as example:
— 2 channels
— 2 DIMMs per channel
— 2 ranks per DIMM
— All rank capacities equal

* Mappings use this scheme:

— Data striped (interleaved) across all
channels, DIMMs, and ranks
— Stripe size is << size of DIMM or rank

AREA 2

DIMM 1 R1
DIMM 3 RO
DIMM 3 R1

AREA 3

MC Channel A

AREA 4

AREA5

AREAG6

DIMM 2 R1
DIMM 4 RO
DIMM 4 R1

o
o
N
=
=
o

AREA7

m
©
c
c
W
c
O
®)
=

AREA 8

GoAE BHEH

Aside: Channel & Rank Interleaving OFF (ViPZonE) v

AREA 1

AREA 2 o
* No striping
— If we access only 1 DIMM, the others
will be idle (low power)

* I[f we want benefits of multi-

channel bandwidth
— Need to access different regions of
address space in parallel

DIMM 1 RO
DIMM 1 R1
DIMM 3 RO
DIMM 3 R1

AREA 3

MC Channel A

AREA 4

AREA5

AREAG6

AREA7

DIMM 2 RO
DIMM 2 R1
DIMM 4 RO
DIMM 4 R1

m
©
c
c
W
c
O
®)
=

goCL BHEH

AREA 8

B Implementation: Lower OS Layer

START: Receive allocation zone from
request with power parameters consideration
(write/read, high/low utilization)

no
Attempt
allocation in
lowest write/ yes
read power
DIMM zone
highl

Remove this
zone from
consideration

no low
Attempt no
% Restrict allocation in
possible lowest write/
DMA32 yes DIMM || read power yes
required? zones to DIMM zone
those < with >
4096 MB THRESHOLD

Remove this Physical page allocator

A 4

Normal
allocation?

yes / Expected

usage?

Zone list
empty?

free space
no

In the kernel, simplicity = hig

h performance

=1 Implementation: Lower OS Layer v

Physical address partitioning (zoning)

Increasing power Increasing power

—_— —_—

16MB

DMA32

4GB

oy — =N =
Y »
NORMAL
ZONE n
Top
DIMM n [

Our zones have different power characteristics by directly
mapping them to DIMMs

Simulation Results: Promising Power Savings v

e Simulation showed that memory * Memory power savings could increase
power savings could be up to ~20% to ~30% if DIMM variability increases to
— Using the 1GB DIMM variability 100%
data shown earlier * Performance overhead should be
modest
Average Power Savings (%) What-If Average Power Savings (%) — Vanilla
— Vanilla Linux vs. ViPZonE Linux vs. ViPZonE

20

Average Power Savings (%)

Average Power Savings (%)

Detailed simulations indicate promising power savings

Tot Mem Energy (J)

Measured Testbed Results

Config. A

& 400
g 300
=
g 200
£ 100
S 0
>
&

N

B Vanilla Interleaved ElVanilla BOViPZonE

-

4
g
5 3
E 2

1
5
=
) 3 &
> g ©
< P &

&)
Rl &®©
~°\‘?r
B Vanilla Interleaved B Vanilla OViPZonE

B Vanilla Interleaved BVanilla BViPZonE

Config. B

=
O N Ul
o © o
o O© o

w
(=]
o

Execution Time (s)
[e))
o
[=} o

B Vanilla Interleaved BVanilla BViPZonE

=
= N

<
3

Avg Mem Power (W)
o

& &

B Vanilla Interleaved B Vanilla BViPZonE

2000
1500
1000

500

Tot Mem Energy (J)

B Vanilla Interleaved BVanilla BIViPZonE

More Measured Testbed Results

200 ‘

S 225 =) - 7|
& 150 & % 7
5 $ 100 / %
g 75 7 7 T 50 / % 7
g & & & & & & o g N & & & & S o &
& e & & & X R & & & & & L .\\\\\
\‘\‘\Qr S Q B \N\}y \\\\b & g \\\\\53 « N g ;,\’“\
@Vanilla OViPZonE @AVanilla BViPZonE
(a) Fast2 Memory Energy, idle energy removed (b) Slow2 Memory Energy, idle energy removed
| Metric | Value (Benchmark) | Metric | Value (Benchmark) |
Max memory power savings, Fast2 config | 25.13% (facesim) Max memory power savings, Slow2 config 11.79% (canneal)
Max execution time overhead, Fast2 config | 4.80% (canneal) Max execution time overhead, Slow2 config | 1.16% (canneal)
Max memory energy savings, Fast2 config | 27.80% (facesim) Max memory energy savings, Slow2 config | 10.77% (canneal)
Max memory energy savings, Fast2 config | 46.55% (facesim) Max memory energy savings, Slow2 config | 50.69% (canneal)
estimated, “NVM” (no idle power) estimated, “NVM” (no idle power)

17

Summary

* VViPZonE can reduce energy consumption in systems with
many variable memory devices (e.g., servers and desktops)
* This can be applied in today’s systems with minimal
hardware changes

* ViPZonE enables app-level exploitation of variability with
minimal programming changes

* On-going work aims to improve OS sophistication with
bookkeeping

— Kernel could automatically promote hot pages to low power, etc.

— App flags become “hints” rather than strict guidelines
* Leaves optimal memory scheduling policy to OS

* Results through simulation & real testbed demonstrate good
energy savings

* Underdesigned and Opportunistic Computing is a promising
direction for further research

