

Electrical modeling of imperfect lithographic patterning

Puneet Gupta*

Tuck-Boon Chan, Rani S. Ghaida

Dept. of EE, University of California Los Angeles

(puneet@ee.ucla.edu)

Work partly supported by NSF, UC Discovery IMPACT and SRC.

NanoCAD Lab

http://nanocad.ee.ucla.edu/

Outline

- Introduction
- Modeling Poly and Active Imperfections
- Modeling Line-Ends
- Design-Flow Adoption Challenges
- Electrical Impact of Double Patterning Lithography (DPL) Imperfections
- Conclusions

Scaling and Lithography Problems

0.13µ

Figure courtesy Synopsys Inc.

Lithographic WYSIWYG Breakdown

• Existing compact device models (e.g., BSIM) do not handle non-rectangular geometries.

Where Are Electrical Models of Patterning Imperfections Needed?

- Cells characterization
- Electrically-driven OPC
 - Converting shape into current
- Contour-based design analysis
 - Estimate power and performance.
- Design rule optimization
- Transistor shape optimization
 - Optimizes non-rectangular transistor for delayleakage tradeoffs.

Why Wires Are Not Important

- Width variation averages over long wires.
- Resistance and capacitance change in opposite directions as line width changes.

Simulation at Chip-Level

- Delay and switching power <3%.
- Impact of wire variation is exaggerated as averaging effect is ignored.

Interconnect	Δ delay	Δ Switching power
layers (variation)	(%)	(%)
M2 (+10%)	0.89	1.46
M2 (-10%)	-0.75	-0.69
M3 (+10%)	1.90	2.83
M3 (-10%)	-1.62	-1.85
M4 (+10%)	0.77	1.64
M4 (-10%)	-0.65	-0.84
M5 (+10%)	0.08	0.50
M5 (-10%)	-0.07	0.13
M6 (+10%)	0.22	0.65
M6 (-10%)	-0.19	0.00

Total gates=43K Total area= $0.2mm^2$ FreePDK 45nm process

Non-Rectangular Transistor Modeling

- Existing compact device models (e.g., BSIM) do not handle non-rectangular geometries
- Device models for shape imperfections :
 - Polysilicon gate shape contours [Gupta SPIE'06]
 - Diffusion rounding [Gupta ASPDAC'08, Chan VLSID'10]
 - Line-end shortening : gate not completely formed
 [Gupta DAC'07]
 - Line-end rounding : "tapering", "necking" or "bulging" [Gupta PMJ'08]

Polysilicon Rounding Model

 Line-edge roughness and poly rounding lead to NRG transistor

 Equivalent gate length (EGL) can be used to represent the current behavior of the transistor to communicate to SPICE

Narrow Width Effect (NWE)

- Dopant densities, well-proximity effects, line-end capacitive coupling, etc. change with distance from STI edge
 Non-uniform Vth along channel width
 - Ion/Ioff vs. W plot is not perfectly linear
- The extent and kind of behavior are very processdependent

Modeling Location Dependent V_{th}

 Threshold voltage modeled as a function of location along channel width

$$Vth(x) = \begin{cases} Vth(middle) - K_1(x - w)^2 + K_2(x - w) & 0 \le x \le w \\ Vth(middle) & w \le x \le W - w \\ Vth(middle) - K_1(W - x - w)^2 + K_2(W - x - w) & W - w \le x \le W \end{cases}$$

- K₁ and K₂ can be fitted purely in SPICE regime
 - NWE effect in BSIM → I_{off} vs. Width plot
 - V_{th} vs. location can be fitted such that I_{off} of transistor slices match I_{off} vs. Width plot
- Parameters of V_{th} model are estimated using I_{off} data, which is much more sensitive to V_{th}

Device Level Modeling Results

Compact Model for Circuit Simulation

- EGLs depend on transistor working states
 - EGLs are extracted at $|V_{gs}| = 0$ and $|V_{gs}| = V_{dd}$ for leakage and timing analysis, respectively
- Alternatives :
 - Model a transistor by multiple smaller transistors connected in parallel [Sreedhar ICCD'08]
 - Accurate but number of transistors increases
 - Fit L_{eff} and V_{th} for I_{on} and I_{off}
 ≻Only a set of parameters for a transistor

Other Circuit Models

- Express gate length as a function of V_{gs} in device's model (e.g., BSIM)
 - Given L_{eff} at $V_{gs} = 0$ and $V_{gs} = V_{dd}$,

- Intermediate gate length can be estimated using close form equation [Singhal DAC'07]
- Model the impact of gate length variation using voltage dependent current source [Shi ICCAD'06]
 - I-V curve is calculated based on transistor's shape.
 - ∆I due to non-rectangular gate is extracted and modeled as a current source connected in parallel to the transistor

Voltage dependent current source

15

The Flip Side

- Use the models to draw non-rectangular transistors
 intentionally to reduce power
- Proposed alternative: shape the transistor channel create a *dominant* device
 - Lower leakage, faster delay, smaller capacitance
- 90nm simulation results

Circuit Name	Orig. Delay (ns)	Opt. Delay (ns)	Orig. Leakage (uW)	Opt. Leakage (uW)	% Imp.
C5315	1.96	1.95	31.93	30.46	4.6
C6288	5.62	5.61	39.66	38.38	3.2
C7552	3.19	3.19	36.78	35.08	4.6
i2	0.86	0.86	13.55	12.80	5.5
i3	0.45	0.45	6.07	5.74	5.4

Its not only "L": Diffusion Rounding

- Diffusion rounding occurs due to printing imperfection.
 - Diffusion routing
 - Pwr/Gnd connections
- Modeled as trapezoid gate to investigate electrical performance.

Victor Moroz, Munkang C. & Xi-Wei Lin SPIE 2009

Developing a Physical Diffusion+Poly Rounding Model

- To capture two dimensional E field, slice channel according to its distribution
 - For each slice, $L_{eff-i} = L_i$
- Effective width is derived using gradual channel approximation :

$$W_{eff-i} = \frac{(W_{s-i} - W_{d-i})}{\ln(W_{s-i} / W_{d-i})} \quad W_{d}$$

 V_{th} varies due to NWE and asymmetry between source and drain

$$\Delta V_{th-\text{effective}} = \Delta V_{th-\text{Narrow width}} + \Delta V_{th-CS}$$

• Using charge sharing model:

$$\Delta V_{th-CS} = \frac{qN_aW_c}{2LC_{ox}} \left[\frac{2(L_dW_d + L_sW_s)}{W_d + W_s} - (L_d + L_s) \right]$$

, W,

Total Currents

 Each slice is rectangular with equivalent L,W and V_{th}:

$$I_{total} = \sum_{i=1}^{n} f(L_i, W_i, Vth_i)$$

Can be obtained using conventional compact model e.g., (BSIM).

- Second order effects (DIBL, short channel effects, etc) are implicitly considered in BSIM.
- Evaluate I_{total} at $V_{gs} = 0V$ $V_{ds} = V_{dd}$ (off) $V_{gs} = V_{dd}$ $V_{ds} = V_{dd}$ (on)
- With I_{total}, equivalent device for circuit simulation can be obtained using EGL or other methods.

TCAD vs Model (Diffusion Rounding only)

- Asymmetrical I_{on}/I_{off} when rounding happens at Drain/Source terminals
 - Δ Vth varies according to drain/source ratio

Poly+Diffusion Rounding

										_		L_{I}	\leftrightarrow	
	11	1.2					Erro	r (%)		W ₁	\ /			1
	L1 L2		L2 W _d (nm) (nm)	W_1	W_2	TCAD cal.		SPICE cal.			dr	ain 🛛		source
	(nm) ((nm)	(nm)	(nm)	(nm)	I on	I _{off}	I _{on}	I _{off}	Wd			/	source
Diffusion rounding	45	45	155	26	0	-2.1	-0.8	-2.0	-0.5		<u> </u>	\bot		
only	45	45	155	45	0	-2.0	0.7	-1.9	1.1	W_2				
(Source side larger)	45	45	155	78	0	-2.8	0.4	-2.7	0.7			←		\rightarrow L_2
Poly rounding only	55	45	155	0	0	NA	NA	-0.7	2.5					
PolyTounding only	35	45	155	0	0	NA	NA	-0.2	7.5					
	55	45	155	45	0	NA	NA	-1.4	3.1					
Poly+ diffusion	55	45	155	0	45	NA	NA	-2.8	-2.7					
rounding	35	45	155	45	0	NA	NA	-2.4	0.7					
	35	45	155	0	45	NA	NA	-0.7	7.8					

Average error :

(Diffusion layer rounding only) TCAD calibrated model = 1.6% SPICE calibrated model = 1.7% (Poly+ Diffusion layers rounding) SPICE calibrated model =2.7%

Application on Logic Cells

		NAND_X1		NOF	R_X1
		Original	Spacing	Original	Spacing
			Reduced		Reduced
Delay	nominal (no defocus)	1.00	1.00	1.00	0.99
	worst (100nm defocus)	1.05	1.04	1.05	1.05
Leakage	nominal (no defocus)	1.00	1.00	1.00	1.01
	worst (100nm defocus)	0.91	0.91	0.90	0.90
area		1.00	0.95	1.00	0.95

- At 100nm defocus Δ Delay = 5% Δ Leakage = 9%
- Design rule can be optimized.

NAND2_X1 NOR2_X1

Line-End Imperfection

- line-end shape changes fringing capacitance and narrow width effect
- Fringing capacitance can be modeled by

$$C_{f-total} = \sum_{i} C_{f-si} + C_{f-gateedge}$$

[Gupta PMJ'08]

Electrical Impact of Line-End Problems

• LEE vs. Capacitance

Line-end extension increases C_g because there exists fringe capacitance between line-end extension and channel.

Capacitance vs. V_{th}

Cg affects Vth, narrow width effect

- C_g increases $\rightarrow V_{th}$ decreases
- C_g decreases $\rightarrow V_{th}$ increases
- V_{th} vs. Current

 I_{on} and I_{off} are functions of V_{th}

- V_{th} increases \rightarrow I_{on} , I_{off} decrease
- V_{th} decreases \rightarrow I_{on} , I_{off} increase

Misalignment Model

- There exists misalignment error between gate and diffusion processes
- Overlapping region (=actual channel) can vary according to misalignment error
 - Increase linewidth variation

Poly -

Active

Optimizing Line-End of SRAM

SRAM Bitcell Layout vs. Line-End Design Rule

Large *n* is better for leakage variation but it increases OPC and Mask costs.

According to the taper shape, LEE design rule can be optimized to reduce bitcell size.

Line-End Shortening (LES)

Polysilicon does not cover active region completely

 Sources: Misalignment and line-end pullback

- Transistor suffering LES :
 - Functionally correct
 - High Leakage power
 - May have hold time violation

Design Flow Integration

- Full-custom/Analog designs
 - SPICE or SPICE-like analyses flows
 - Weq, Leq per transistor is sufficient
- Cell-based digital designs
 - Static analysis flows based on standard cell abstraction
 - One cell is 2-100 transistors
 - Timing/power views stored in pre-characterized ".lib" files
 - Analysis done at PVT "corners"
 - State of art 45nm logic designs have 10M+ cells and 50M+ transistors → Hierarchy preservation essential

Adoption Challenge #1: Simulation Runtime

- "Expected" runtime ~ 1M instances/2 hrs
 - ~1nm accuracy needed for timing analysis
 - Multiple focus, exposure and overlay conditions?
- Tricks to play
 - Simulate only the gate area on Poly and Diff
 - Parallelization
 - Leverage pre-simulated cells
 - Mix of rule-based and model-based approaches
 - Filter simulation areas
 - Timing criticality: simulate only near critical instances
 - Geometric criticality: pattern-based or graph-based filtering
- Added complication: need for *incrementality*
 - Timing/power optimization \rightarrow incrementally resimulate after change
 - Trick: use methods which do not require (significant) layout change.
 - E.g., multi-Vt

Adoption Challenge #2: Uniquification

- Lithography simulation + NRG model → potentially all instances of a cell master may be different
 - − E.g., 10 Leq steps, 10 transistors in a cell \rightarrow 10¹⁰ unique cell instances possible
 - Typical cell library size = 1000 cells
 - Typical design size = 10M instances
 - Uniquification and flattening → 10000X increase in library size → intractable STA, etc runtimes; data management nightmare
- Solutions/research needs:
 - Smart pruning of cell variants
 - Snap to pre-chosen set of variants; or
 - Generate minimal set of additional variants
 - Design-context (power/timing) aware
 - Incremental characterization/estimation of variants
 - Transistor-level analysis methods to leverage pre-existing ".libs"
- Similar problems for any systematic variation analysis
 - RTA, strain, etch...

Adoption Challenge #3: SPICE vs. Litho Corners

- Typical BSIM corner methodology
 - Based on a reference pattern context
 - FF, SS & TT correspond to the device placed in the reference context
 - Within this context, parameters (tox, Vt0, etc.) are fitted from silicon over multiple L and W bins
 - Litho-dependency in the pattern contexts outside the reference pattern is not accounted for
 - Prohibitive to cover all contexts
 - Some limited context-dependent "re-centering" of the model
- Typical litho process window
 - Across focus, exposure with multiple patterns
- No explicit connection between L/W variation in litho vs. SS-FF L/W variation in SPICE → No way to connect litho simulation across PW to circuit power/performance analysis

Starting Point: Compact Model for Channel's Shape

- NRG transistor are modeled as transistor slices connected in parallel
- Detailed description of transistor slices is costly
 - (transistor #) x (slices #) x (geometrical info)
- Example Compact Shape Model :
 - Ignore narrow width effect \rightarrow slices are independent
 - \rightarrow can be rearranged

- Approximate channel slices by a trapezium
 - L and W replaced by Lmin, Lmax, W → 1 extra layout-dependent parameter extracted by device extraction

Patterning Methods – Now and Future

- Next generation lithography is not ready at 22nm
 EUV, nanoimprint and electron beam direct write
- RETs alone are unlikely to be enough
- Alternative solutions:
 - DPL \rightarrow pitch relaxation using 2 separate exposure/etch steps
 - Interference assisted lithography \rightarrow form 1D grating and remove unwanted features with a trim-exposure
 - Source-mask optimization → enhance printability using pixellated source and limited set of layout patterns
- Challenges of these solutions:
 - impose restrictions on layout
 - carry serious implications on design

Double Patterning Lithography

- ≈ 2X pitch relaxation
- But many challenges and implications for design

Within Layer Overlay

- Within-layer overlay translates into linewidth/spacing variation
 - depending on process flavor
- For devices (poly)
 - Gate spacing affects liner stress
 - Gate-to-contact spacing affects
- For wires [Ghaida SPIE'09]
 - Delay variation can reach up to 17% for a line segment but..
 - Max. variation = 3.4% for a path
 - Indirect benefit due to congestion
 - Averaging
 - Up to 50mV increment in peak crosstalk glitch

Bimodality Problem

- Different exposure/etch steps → two CD populations
- Overlay is another contributor to bimodality
- Large CD/delay variability (e.g., 34% 3 σ increase by ASML study) $3\sigma_{pooled}^2 = \frac{3\sigma_{p1}^2}{2} + \frac{3\sigma_{p2}^2}{2} + \left(\frac{3}{2}|\mu_{p1} - \mu_{p2}|\right)^2$
- Loss of spatial correlation
- Timing problems: clock skew and worse timing slack (e.g., 53ps and 46ps assuming 6nm CD difference [Jeong ASPDAC'09])

Other Layout Dependent Sources of Variability

- Layout-dependent stress variation (e.g., $15\% \Delta I_{on}$)
- Well proximity effect on V_{th} (e.g., up to 10% delay increase)
- Etch introduces CD variability with strong dependence on pattern-density within a few microns range
- RTA used in the fabrication of ultra-shallow junctions
 - Long-range effect (few millimeters)
 - Affects I_{on}/I_{off} ratio and V_{th} .
- CMP imperfections of dishing and erosion
 - Causes interconnect *RC* variability
 - Depends on line-width/spacing and pattern-density within a long-range (up to 100micron)

Summary

- Lithographic variation is a major source of gate's length and width variations.
 - Wires not all that important
 - Non-rectangular transistor modeling can reduce pessimism in design rules as well as enable accurate power/performance analyses.
 - Adoption of electrical model strongly depends on
 - RET and patterning technologies.
 - Layout restrictions for manufacturability.
 - Contribution of lithography to total electrical variability
- Other sources of layout-dependent variability
 - Layout-dependent stress variation (e.g., $15\% \Delta I_{on}$)
 - Well proximity effect on V_{th} (e.g., up to 10% delay increase)
 - Etch bias
 - RTA induced Vth
 - CMP imperfections of dishing and erosion