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Motivation

PCB

Limited by 
Interconnect pitch

• BGA ~400µm

• C4 ~100µm

SerDes

• Power 
Hungry

• Large Area

SoC

• Design 
complexity

• Cost.

• Die Size

• Yield

Interposer

Limited by 
µbump pitch 

~40 µm.

• High communication Bandwidth & low Power consumption

• Fine pitch interconnects operating at lower speed for lower 
energy per bit and reduced area per channel.

Today’s Bandwidth
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SuperCHIPS Protocol

Direct metal-
metal bonding

Fine Pitch 
Interconnects 
<10µm

• More Data links

Higher 
Bandwidth

Eliminate Die 
level 

Packaging

Reduce inter-
die spacing 

<100µm

Short 
wirelength

• Low Channel 
loss

Low 
Latency

Reduce Driver 
Complexity

• Reduce Size

Eliminate SerDes

Reduce I/O power

Data_in

Transceiver

PCB: SerDes SuperCHIPS: 
Simple Inverter
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SuperCHIPS Fine Pitch Interconnect (FPI) Scheme

• Die-to-Wafer Bonding
‒ Metal-metal Thermal Compression Bonding (TCB)

• SuperCHIPS FPI Scheme
– Silicon Interconnect Fabric (Si-IF)

– Small Dielets (0.5 - 5 mm edge length)

– Fine pitch (2 - 10 µm) interconnects

– Inter-dielet spacing (50 - 100 µm)
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Silicon Interconnect Fabric (Si-IF)

• Thermomechanical Properties
– Rigid and Mechanically robust 

substrate.

– Minimize thermomechanical 
mismatch.

– Good heat dissipation.

• Electrical Properties
– Fine traces: (1 – 5 µm).

– Fine pitch interconnects: (2 –
10 µm).

– Up to 4 levels of dual damascene 
wiring.

A. A. Bajwa, et.al, “Fine Pitch Die-to-Si 

Interconnections using Thermal Compression 

Bonding”, ECTC (2017).

Friday, June 2, 8:00 am. Southern Hemisphere II.
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Interconnect Modelling

• 3D interconnect 
models simulated in 
ANSYS HFSS. 

• BOEL top metal layer 
dimensions for links
– 1 µm width, 1.5-10 µm 

pitch

• Direct Cu-Cu bonding 
with no intermetallic.

• Different 
configurations for 
signal transfer.

Model to simulate link characteristics

(a) GSSG config. (b) GSG config. (c) GSSSSG config.

(a) (b) (c)
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PCB vs Si-IF links

PCB links Si-IF links

• Long channels (several mm)
– High parasitic inductance.

– RLC link behavior.

• Short channels (<500 µm)
– Low parasitic inductance.

– RC link behavior.

• Transmission Line Model
– Signal Reflections & Matching

• RC Line Model
– No signal reflections

Vs

Zs
Zo

Zl

Vs

Zl

Rw

Cw

• Inter Symbol Interference
– Large Transceiver ~0.81mm2 *

– Energy/bit: >23pJ/bit. 

• Synchronous data transfer

• No Inter Symbol Interference
– Simple inverter driver ~0.05µm2

– Energy/bit: <0.3pJ/bit.

• Can be Asynchronous
* R. Navid et al., "A 40 Gb/s Serial Link Transceiver in 28 nm CMOS Technology,” JSSC 2015.
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Reduced Link Parasitics

Interconnect 

pitch/ length

R @1GHz* 

(Ω)
L (nH) C (fF)

2 µm/ 100 µm 2.09 0.1 17.3

10 µm/ 100µm 1.89 0.1 8.54

• Ansys Q3D extractor model.

• Low Parasitic Inductance
– RC link behavior

• Low Parasitic Capacitance
– Low latency and power.

• Channel loss <-2dB for 500 
µm wires even at 100 GHz.

Insertion Loss for 2 µm interconnect pitch. 

*Accounting for skin depth

Insertion Loss for 10 µm interconnect pitch. 
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Low Cross-talk

• Excellent dielectric isolation 
of SiO2.

• Lower Cross-talk than 
typical acceptable value of 
-12dB.

NEXT for signals without shared ground

NEXT for signals with shared ground

Cross-talk Without 

Shared 

Ground

With Shared 

Ground 

@10GHz

Near End Cross-

talk (NEXT)

<-20dB <-15dB

Far End Cross-

talk (FEXT)

<-20dB <-20dB
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Superior Transfer Characteristics for High 
Speed Data Transfer

• Digital signals (0.1-100 GHz) transfer with loss <-2dB for 
short channels (< 500 µm).

• Cross-talk is <-15dB for digital signal transfer.

• Can achieve Data-rates of >20Gbps/channel.
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Low Attenuation for THz frequencies

• Short wires of <100 µm. 

– RC behavior. Characteristic Impedance not defined.

– Attenuation: < 3dB even for THz signals.

• Achievable termination > 100  Ω.
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Signal Integrity Analysis

• Simple tapered inverter I/O driver. Eliminate SerDES.

• Latency and power dominated by ESD cap.

• 10GHz signal 
– eye opening: 997mV

– eye width:
– 2 µm- 68.4ps

– 10 µm- 59.81ps Schematic of circuit use for signal integrity analysis. 

Eye-diagram of 2 µm pitch interconnect Eye-diagram of 10 µm pitch interconnect
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Si-IF vs Conventional PCB

[23] H. Kalargaris, et. al, "Interconnect design tradeoffs for silicon and glass interposers," (NEWCAS), 2014.

[24] M. A. Karim, et. al,” Power comparison of 2D, 3D and 2.5D interconnect solutions and power optimization of 

interposer interconnects” ECTC 2016.

[37] R. Navid et al., "A 40 Gb/s Serial Link Transceiver in 28 nm CMOS Technology,” JSSC 2015.

Interconnect pitch/protocol
10 µm on Si IF Super-

CHIPS

50 µm on Si Interposer

DDR3

400 µm on FR4 

PCB/ SerDes

Dielet Size (mm2) 10-100 25-600 25-625

No of signal links 600-2,000 100-1,000 100-500

Inter-die distance (µm) <500 <5,000 10,000

Overall Latency (ps)
No ESD 40.22

300[23] ~1,000
ESD 58.8

Max data-rate/link 

(Gbps)

No ESD 13
1.6[24] 40[37]

ESD 4.21

Energy per bit (pJ/b) <0.4 9.48[24] 23.2[37]

Max Bandwidth per mm

(Gbps/mm)

No ESD 1,300
32 100

ESD 421

Total I/O power (W) 2.13-6.74 6-15 46-230
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Benefits of SuperCHIPS

• Inter-dielet distance: 10-20x

• I/O pins compared to BGA: 
15-80x

• Latency: 13-27x

• Energy per bit: 20-80x

• Bandwidth per mm: 30-120x

*M. A. Karim, et. al,” Power comparison of 2D, 3D and 2.5D interconnect solutions and power 

optimization of interposer interconnects” ECTC 2016.
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Experimental Results

• DC results-
– Demonstrated continuity with 400 

interconnects per daisy chain with 
99% yield.

– Contact resistance: 42 mΩ.

• AC results-
– High freq measurements in progress.

A.Bajwa,et.al,“Fine Pitch Die-to-Si Interconnections using Thermal Compression Bonding”, ECTC 2017.

500 µm 100 µm 

500 µm 

1 mm 

100 µm 

10 µm 
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Conclusion

• SuperCHIPS protocol shows SoC-like performance with 
technology heterogeneity and flexibility. 

• Channel losses are less than 2dB for digital data transfer of 
greater than 20Gbps/channel.

• Latencies are 27x smaller compared to PCB.

• Fine Pitch interconnects and shorter channels achieve  
120x improvement in Bandwidth per mm.

• 80x Lower power due to elimination of SerDes.

• Reduces cost of design and validation by IP reuse.
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Application of SuperCHIPS to Hexa-core 
CORTEX M0
• Hexa-core CORTEX M0 

architecture.
– 2 cores for high 

throughput.

– 4 cores for higher energy 
efficiency.

• Monolithic vs 
Heterogenous 
technologies
– 65nm General Purpose 

(GP): High performance.

– 65nm Low Power Early 
(LPE): Energy efficiency.

– 15% and 37% energy 
savings.

Design: CortexM0                            Power in mW

Activity Factor 0.001 0.01 0.1

GP+GP: nominal/nominal 0.262 0.526 3.8

GP+LPE: nominal/nominal 0.174 0.546 7.44

LPE+LPE: nominal/nominal 0.086 0.564 11.8


