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• Introduction of stochastic computing (SC)

• Introduction of voltage-controlled magnetic tunnel junctions 
(VC-MTJ) and negative differential resistance (NDR)

• Stochastic logic gates designed by VC-MTJ and NDR

• Stochastic bitstream (SBS) generation design

• Design evaluation

Guidelines

4 April 2017 Shaodi Wang / UCLA 2



• Advantages
• Efficiency in additions and multiplications
• Parallelism

• Disadvantages
• High leakage from massive registers
• Inefficiency for high-precision applications
• Inefficient pseudo stochastic bitstream generation
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Stochastic computing (SC)



• Advantages
• Low leakage
• Truly random SBS generation

• Disadvantages
• SBS generation is limited by precision
• Correlation caused by process variation 
• Data copy between CMOS and NVM
• Amended by the proposed work

Non-volatile SC with STT-MTJ and memristor
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Figures from Knag, Phil, Wei Lu, and Zhengya Zhang. "A native stochastic computing architecture enabled by memristors." IEEE Transactions 

on Nanotechnology 13.2 (2014): 283-293.



• The proposed voltage-controlled magnetic tunnel junctions (VC-MTJ) 
based SC

• VC-MTJ based NV SBS registers

• Computations on VC-MTJs
• Skipping the data copy between non-volatile memory and CMOS logics

• Energy-efficient computation

• Efficient and reliable truly stochastic bitstream (SBS) generator
• Free from process and temperature variation impact

Highlights
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Utilizing Voltage-controlled magnetic tunnel junctions (VC-MTJ) 
for SBS generation and storing
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• Anti-parallel (AP) and parallel (P) resistance 
>50k Ω low switching energy

• Non-deterministic switching  need a 
simple hardware to enable deterministic 
switching
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Introduction – Negative differential resistance (NDR)
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• Reset operation

• Read operation

Bitwise operation using MTJ and NDR
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Bitwise operation (cont’d)
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Bitwise operation (cont’d)
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Stochastic bitstream generation
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• Generation can be pipelinedBinary fixed point 0.101



• SBS generator
• HSPICE simulation with experimentally verified 50nm VC-MTJ Verilog-A 

model

• 55X lower energy than CMOS linear-feedback shift register (LFSR)

• Standard adder and multiplier
• HSPICE simulation to extract power and delay

• Multiplier: 8 transistors per bit (this work) vs. 160 transistor per bit for a 
multiplier (CMOS binary)

• Register: 3 transistors + 1 VC-MTJ (this work) vs 16 transistors (CMOS 
binary)

Design simulation
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• Two representative design benchmarks
• Finite impulse response (FIR) filter

• Adaboost machine learning accelerator

• Ratio of SBS generation to multiplication and additions
• FIR > Adaboost

Evaluation benchmarks
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• Experimental setup
• Precision: 32-bit SBS to 256-bit SBS corresponding to 5-bit to 8-bit binary 

fixed-point number
• Energy is accounted for computation and SBS generation separately
• Energy/output is the comparison metric

• SC is easily pipelined, so there is no delay comparison

• Evaluation procedure
• CMOS binary and CMOS SC implementation

• Synthesis and place-route with 45nm commercials library
• This work 

• HSPICE with 45nm CMOS commercial library and VC-MTJ experimentally 
verified model

Evaluation (cont’d)
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• Energy efficiency comparisons
• FIR: 3~7X (256~32-bit precision) lower energy than CMOS binary design 

• Adaboost: 12~25X (256~32-bit precision) lower energy than CMOS binary 
design

• This work < CMOS binary < CMOS SC in terms of energy

• SC is more advantageous in low-precision applications

Evaluation (cont’d)
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Thank you!
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Backup slides
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Voltage-controlled magnetic tunnel junctions (VC-MTJ)
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• Zero read disturbance
• Anti-parallel (AP) and parallel (P) 

resistance (>50k Ω)  low switching 
energy

• Efficient switching (computing): ~fJ 
per bit operation
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Experimental Setup for NDR and MRAM
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Experimental NDR and NDR-assisted write and read 

demonstration
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Experimental NDR and NDR-assisted write and read 

demonstration

• “Reset” VC-MTJ to P 

state (0 state) w/ NDR

– Reset error rate < 10-6

• NDR-assisted non-

destructive VC-MTJ 

read

– 0 read disturbance

– Full voltage output 

swing through NDR to 

detect MTJ states
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Stochastic bitstream generation

• Conversion from binary input to fraction
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Stochastic bitstream generation (cont’d)

• Copy (y=x)

– Reset SBS y to 0

– For each xi=1, flip yi to 1

• Scaled copy (y=x/2)

– Reset SBS y to 0

– For each xi=1, random yi

• Copy and rand (y=(1+x)/2)

– Reset SBS y to 0

– For each xi=1, flip yi to 1

– For each xi=0, random yi
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Stochastic bitstream generation (cont’d)
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STEP SBS0 IN0 SBS1 IN1 SBS2 IN2
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Stochastic bitstream generation (cont’d)
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• Hardware designs:

– SBSodd is written while SBSeven is being read

– Every clock cycle half of SBS is changed
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Stochastic bitstream generation (cont’d)
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Reset SBS0

Randomize SBS0
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On-going works – automatic synthesis

• Target: synthesizing algorithm description to circuit

• Optimizing targets

– Correlation, area and latency minimization

• Proposed solutions

– Factorization and computing depth minimization

– Examples:

• 𝐹 = 𝑎𝑏𝑔 + 𝑎𝑐𝑔 + 𝑎𝑑𝑓 + 𝑎𝑒𝑓 + 𝑎𝑓𝑔 + 𝑏𝑑 + 𝑐𝑒 + 𝑏𝑒 + 𝑐𝑑 −→ 𝑏 + 𝑐 𝑑 + 𝑒 + 𝑎𝑔 +
𝑑 + 𝑒 + 𝑔 𝑎𝑓

27


