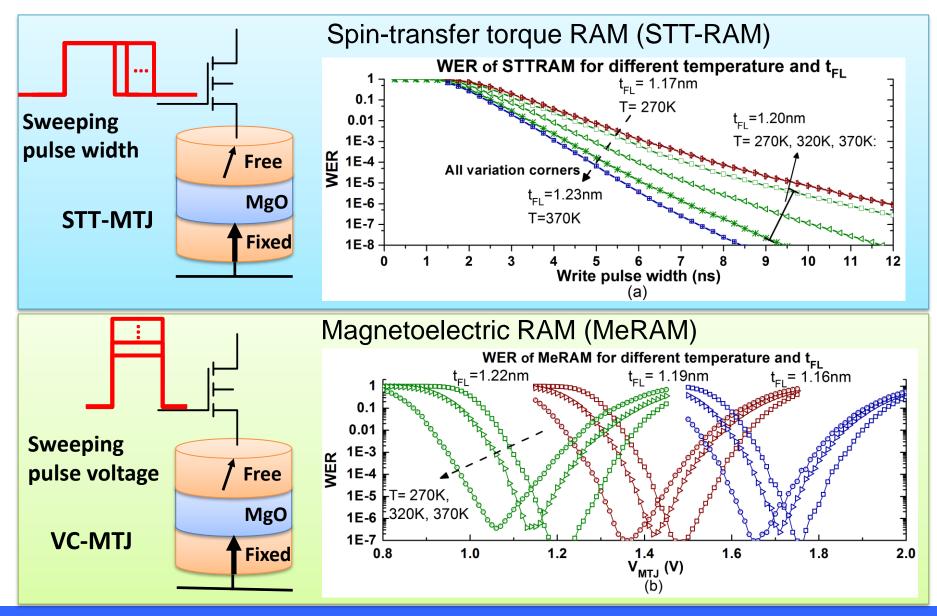

Shaodi Wang, Hochul Lee, Pedram Khalili, Cecile Grezes, Kang L. Wang and Puneet Gupta

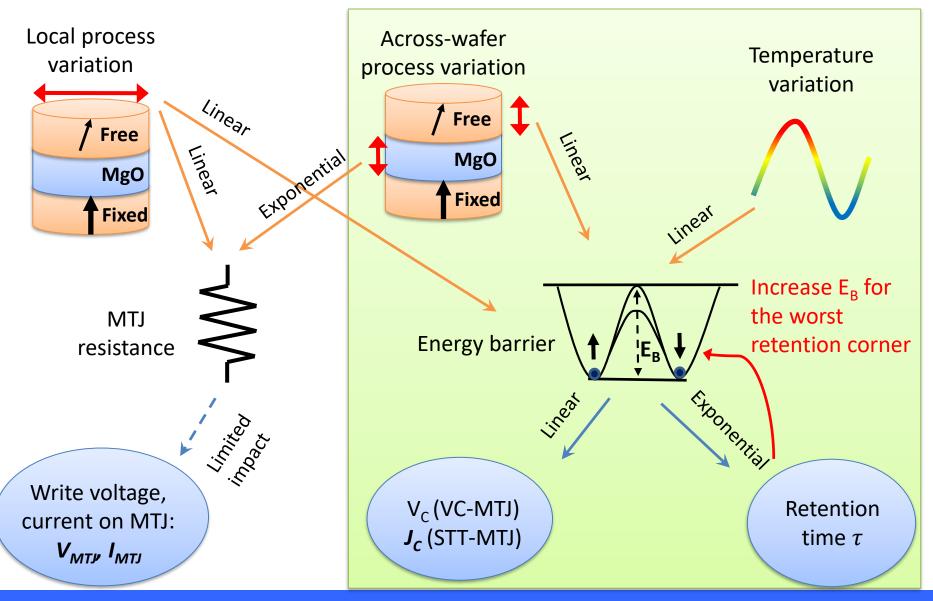
University of California, Los Angeles

VARIATION MONITOR-ASSISTED ADAPTIVE MRAM WRITE

Write mechanism of STT-RAM and MeRAM

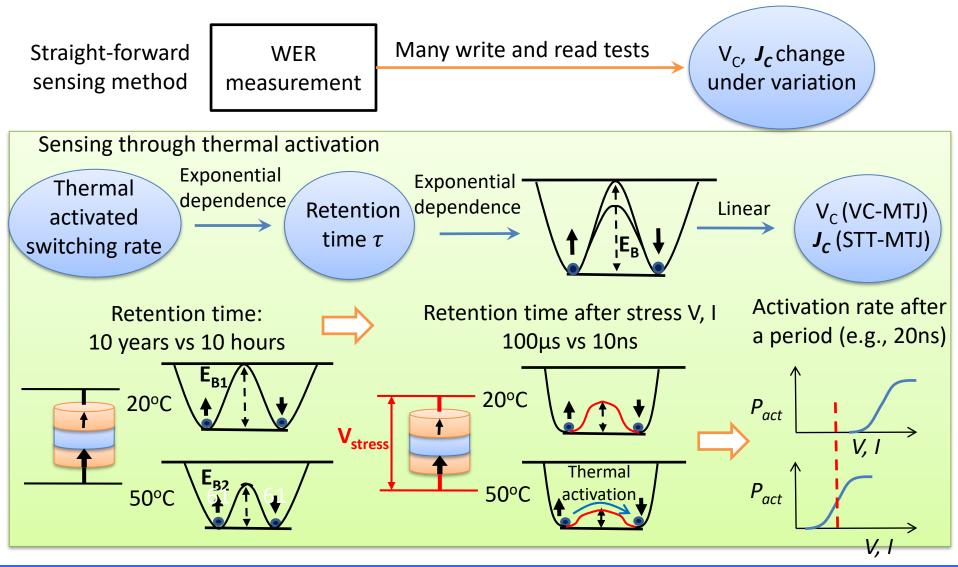

- STT-MTJ write
 - Bi-directional current-driven
 - Critical current density (*J_c*)
 - Deterministic write
 - Slow (5~10ns)
 - High power (0.2pJ~1 *pJ/bit*) due to low MTJ resistance (1k-10k Ω)

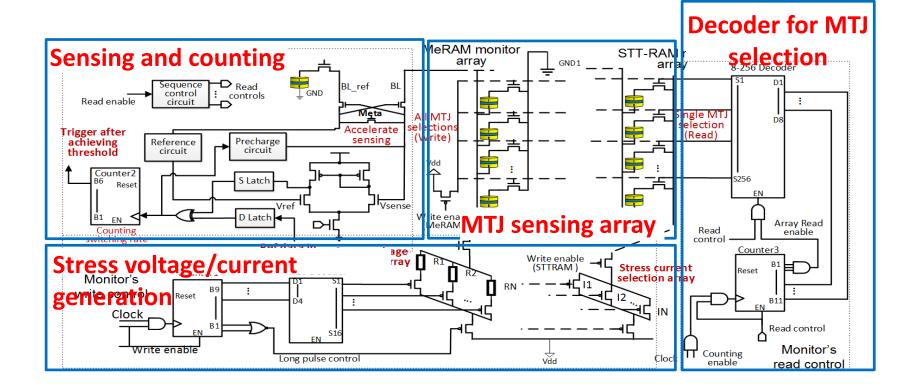
Voltage-control magnetic tunnel junction (VC-MTJ)


Free layer energy barrier Free MgOFixed V = 0

- VC-MTJ write
 - Uni-directional voltage-driven
 - Critical voltage (V_c)
 - Non-deterministic write (leads to write errors)
 - Fast(~1ns)
 - Low power (10~50 *fJ/bit*) due to high MTJ resistance (20k-200k Ω)

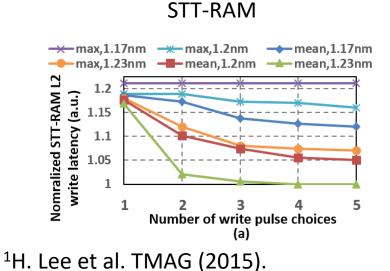
MRAM write error rate (WER) under variation

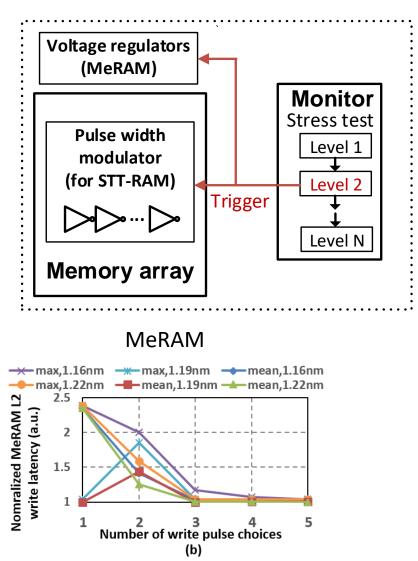



MRAM write under variation

Sensing write behavior change under variation

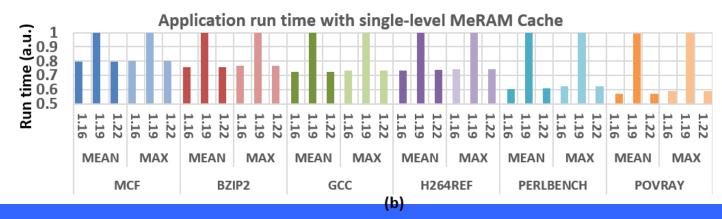
30°C changes WER from 10^{-6} to $10^{-4} \rightarrow$ High energy and long delay

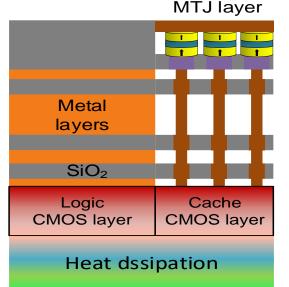



Monitor	Latency	Accuracy	Energy	Area
C. Chung, et al	$0.1 \mathrm{ms}$	$9^{o}C$	$0.015 \mu J$	$0.01 mm^2$
K. Woo, et al	$0.2 \mathrm{ms}$	$3^{o}C$	$0.24 \mu J$	$0.04mm^{2}$
P. Chen, et al	$1 \mathrm{ms}$	$2^{o}C$	$0.49 \mu J$	$0.01 mm^{2}$
A. Aita, et al	$100 \mathrm{ms}$	$0.1^{o}C$	$13.8 \mu J$	$0.04 mm^{2}$
this(STT)	$1-10\mu s$	$10^{o}C$	0.12 - 1.2 n J	$0.0005 mm^2$
this(Me)	$1\text{-}10\mu s$	$10^{o}C$	0.27 - 2.7 nJ	$0.0005 mm^2$

Application of the variation monitor - adaptive

write


- Dynamically select optimal pulses for multiple-write¹
 - Write latency variation minimization
 - Three write pulse choices are enough
 - 1.2X for 1-MB STT-RAM write latency improvement
 - 2.4X for 1-MB MeRAM write latency improvement



Evaluation of adaptive write

- Experimental setup:
 - 32nm Single-core X86, 8-MB universal MRAM cache
- Simulations
 - MTJ switching simulation (experimentally verified physical models)
 - Circuit simulation (SPICE and NVSIM)
 - Architecture simulation (gem5)
 - Thermal simulation (Hotspot)
 - Power simulation (CACTI)
- 1.7X and 1.1X application run time improvement for processor with MeRAM and STT-RAM

Conclusion

- The proposed variation monitor can sense combined wafer-level process and temperature variation
 - 10X faster, 5X energy-efficient, and 20X smaller than conventional 65nm temperature monitor with same accuracy
- Adaptive write scheme dynamically selects optimized write pulse through variation monitoring
 - MeRAM receives more benefit than STT-RAM
 - 2.4X and 1.2X cache speed improvement for MeRAM and STT-RAM
 - MeRAM suffers from more variation impact
 - STT-RAM without multiple-write is expected to see much more improvement in both power and latency (future work)
 - 1.7X application run time reduction for processor with MeRAM cache
 - 1.1X application run time reduction for processor with STT-RAM cache
- Thank you for your attention