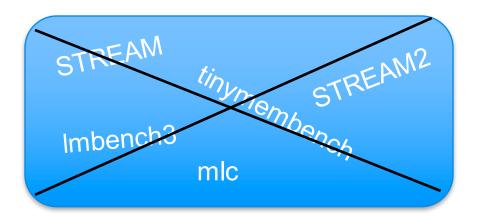


X-Mem: A Cross-Platform and E<u>x</u>tensible <u>Mem</u>ory Characterization Tool for the Cloud

Mark Gottscho^{1,2}

Sriram Govindan³ Bikash Sharma³ Mohammed Shoaib² Puneet Gupta¹ ¹UCLA Los Angeles, CA, USA


²Microsoft Research Redmond, WA, USA

³Microsoft Redmond, WA, USA

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Uppsala, Sweden April 19, 2016 – http://seas.ucla.edu/~gottscho

Motivation: Memory is Important in Cloud Computing

- Cloud subscribers want to maximize app. performance
- Cloud providers want to minimize CapEx/OpEx given SLAs
- Needs pressure memory hierarchy: characterization is critical
- Memory benchmarking tools don't meet key requirements
 - (A) Access pattern diversity
 - (B) Platform variability
 - (C) Metric flexibility
 - (D) Tool extensibility

Motivation: Memory is Important in Cloud Computing

- Cloud subscribers want to maximize app. performance
- Cloud providers want to minimize CapEx/OpEx given SLAs
- Needs pressure memory hierarchy: characterization is critical
- Memory benchmarking tools don't meet key requirements
 - (A) Access pattern diversity
 - (B) Platform variability
 - (C) Metric flexibility
 - (D) Tool extensibility

We propose X-Mem, a new tool! *Project homepage:* <u>nanocad-lab.github.io/X-Mem</u> *Source code:* <u>github.com/Microsoft/X-Mem</u>

X-Mem Feature (A) Access Pattern Diversity

Degrees of Freedom

1.	Access granularity	32, 64, 128, 256, and 512-bit* chunk sizes
2.	Access types	Read or write
3.	Access patterns	Random, sequential and strided in ± 2 ⁰⁻⁴ chunks
4.	Parallelism	Multithreaded
5.	Page sizes	Large and normal
6.	Topologies	CPU and memory NUMA nodes, core affinity

*As of v2.4.1, April 2016

(D) Extensibility: Developers can easily add specialized patterns through new benchmark kernel functions

X-Mem Feature (B) Platform Variability

1.	OS Support	Windows, GNU/Linux
2.	Architectural support	x86, x86-64 with(out) AVX SIMD extensions, Xeon Phi*, ARMv7 with(out) NEON SIMD extensions, ARMv8

*As of v2.4.1, April 2016

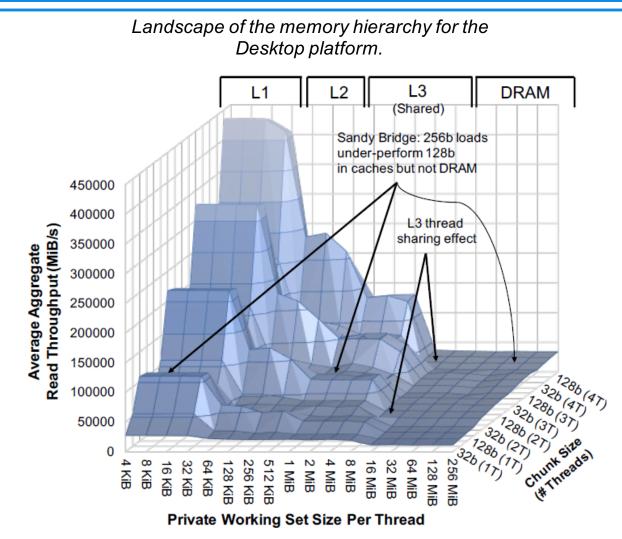
- Portable Python-based build system using SCons
- (D) Extensibility
 - OS and architecture ports are low effort
 - Apples-to-apples memory hierarchy comparisons

X-Mem Feature (C) Metric Flexibility

- **Performance:** X-Mem measures real performance of the memory hierarchy as could be seen by an application
 - Distinct from performance counter or component-centric view
 - Aggregate throughput
 - Unloaded latency
 - Loaded latency

Power

- Simple software hooks for custom power measurement hardware


Statistics on each metric

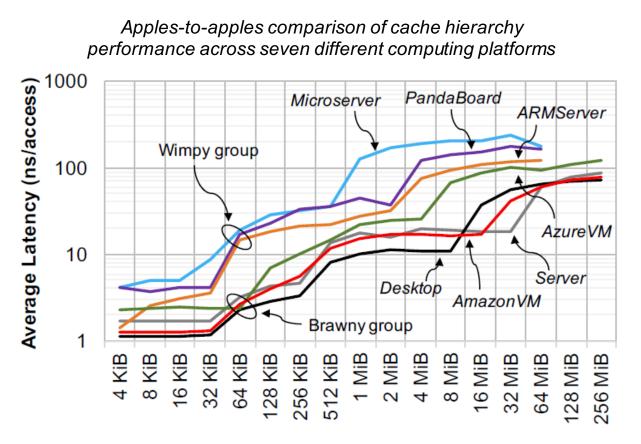
- Mean, percentiles*, min/max*, etc. *As of v2.4.1, April 2016
- (D) Extensibility: fault injection & reliability studies, data-aware power/performance bookkeeping for NVMs, etc.

Case Study 1: Characterization of the Memory Hierarchy for Cloud Subscribers

- Cloud subscribers should measure and leverage:
 - Cache micro-architecture
 - System-level memory management
- Understanding these enables improved application performance:
 - Workload partitioning among threads?
 - Working set size per thread?
 - Data access patterns?
 - When, where, and how to allocate memory?

Case Study 1: Characterization of the Memory Hierarchy for Cloud Subscribers

Mark Gottscho | UCLA

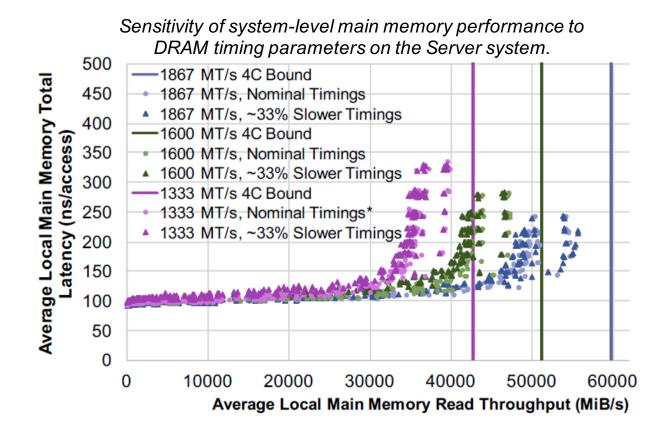

Case Study 2:

Cross-Platform Insights for Cloud Subscribers

- Cloud subscribers can use X-Mem to directly compare memory performance of very different platforms
 - x86 vs. ARM instruction set
 - Virtual vs. physical machines
 - Wimpy vs. brawny hardware
 - Apples-to-apples results from one tool
- This capability enables subscibers to:
 - Choose a target cloud platform that best suits workload characteristics

Case Study 2:

Cross-Platform Insights for Cloud Subscribers


Working Set Size

Case Study 3:

Impact of Tuning Platform Configurations for Cloud Providers

- Cloud providers can use X-Mem to evaluate the sensitivity of system-level performance and energy to memory configurations
 - Number of DRAM channels, DPC, RPD, channel frequency
 - DRAM timing parameters variation-aware memory tuning? [Gottscho ESL'12, CODES+ISSS'12, TC'15, Chandrasekar DATE'14, Lee HPCA'15]
 - Analyze throughput, unloaded and loaded latency, different access patterns, etc.
- This capability enables providers to:
 - Optimally configure their platforms for different types of workloads
 - Maximize performance/\$, minimize TCO, etc.

Case Study 3: Impact of Tuning Platform Configurations for Cloud Providers

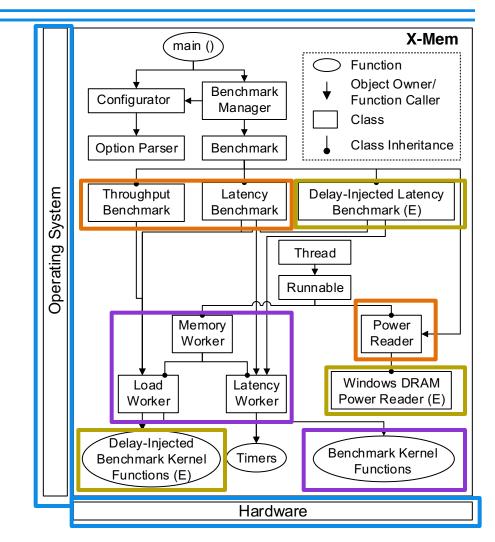
Summary

X-Mem is a flexible tool for characterizing memory systems Surpasses capabilities of all prior tools

> Several key features enable broad usability (A) Access pattern diversity, (B) Platform variability, (C) Metric flexibility, (D) Tool extensibility

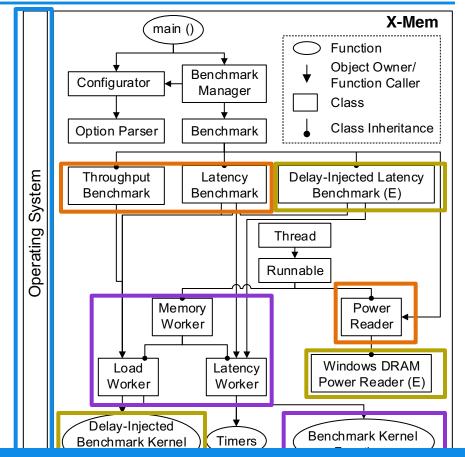
Case studies for cloud subscribers and providers Showed how X-Mem can help optimize application perf., choose optimal platforms, and provision/configure HW for low cost

CONTACT: <u>http://seas.ucla.edu/~gottscho</u>


THANK YOU!

Project homepage: nanocad-lab.github.io/X-Mem Source code: github.com/Microsoft/X-Mem

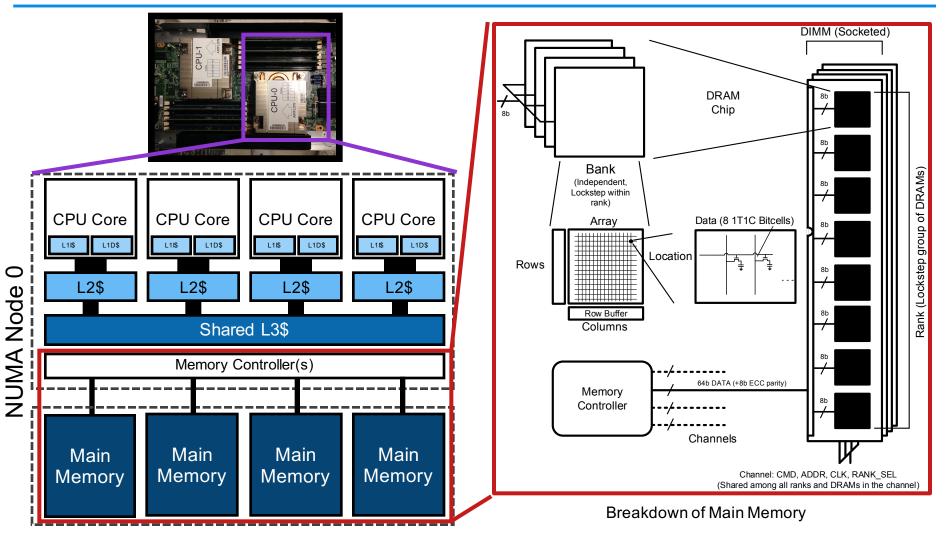
BACKUP SLIDES


X-Mem: A New Memory Characterization Tool

- Object-oriented C++
- Caches through DRAM
- (A) Access pattern diversity
- (B) Platform variability
- (C) Metric flexibility
- (D) Tool extensibility
- Open-source
- User-friendly CLI & documentation

X-Mem: A New Memory Characterization Tool

- Object-oriented C++
- Caches through DRAM
- (A) Access pattern diversity
- (B) Platform variability
- (C) Metric flexibility
- (D) Tool extensibility
- Open-source
- User-friendly CLI & documentation



Latest SW & documentation available @ <u>nanocad-lab.github.io/X-Mem</u>

Tool Comparison

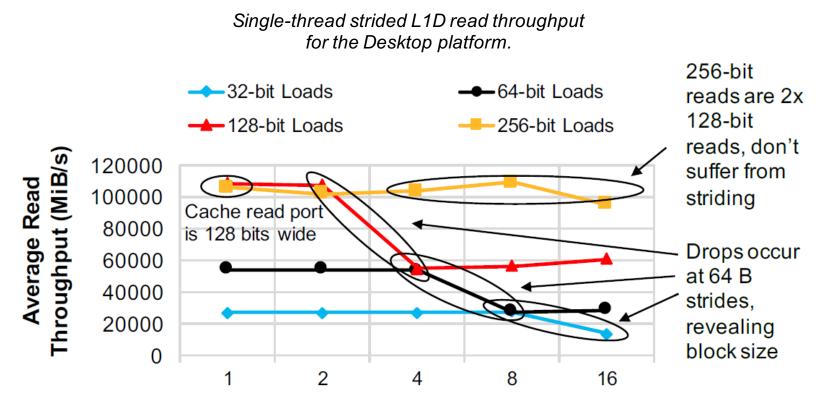
																	(A)	(B)	(C)	(D)
Tool	Thru-	Lat.	Loaded	Multi-	NUMA	Lrg.	Power	Cache &	Native	Native	x86	x86-64	ARM	Vector	Open	Lang.	Acc. Patt.	Platf.	Metric	Tool
	put		Lat.	Thrd.		Pages		Mem.	Linux	Win.				Inst.	Src.		Divers.	Var.	Flex.	Extens.
STREAM v5.10 [13]	~			0				0	✓		~	0	0		✓	C, FORTRAN				
STREAM2 v0.1 [14]	\checkmark			0				0	✓		\checkmark	0	0		1	FORTRAN				
Imbench3 [15]	\checkmark	✓		✓				0	✓		\checkmark	0	0		1	С				
TinyMemBench v0.3.9 [16]	\checkmark	✓				✓		✓	✓		\checkmark	0	0	~	1	С				
mlc v2.3 [17]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
X-Mem v2.2.3 [18], [19]	√	✓	✓	<	√	√	√	√	√	√	✓	√	\checkmark	√	√	C++	√	√	√	✓

Main Memory System

Mark Gottscho | UCLA

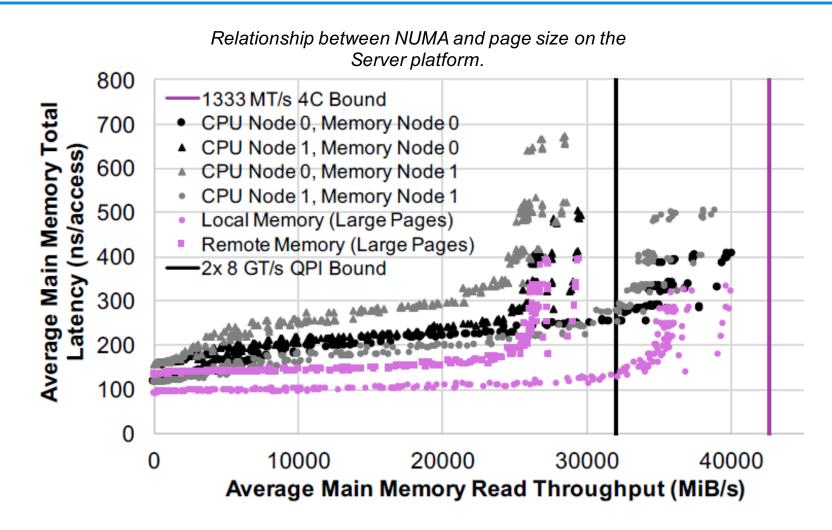
X-Mem (v2.2.3) Command-Line Interface

Option	Args.	Description
-a orall		Use all benchmark kernels.
$-c \text{ or }chunk_size^{\dagger}$	32, 64*,	Memory access width for load kernels.
	128, 256	
-e orextension [†]	0, 1,	Run extended mode with given index.
-f oroutput_file	FILE.csv	Dump benchmark results to a CSV file.
-h orhelp		Print X-Mem usage and exit.
-i orbase_test_index	$0^*, 1,$	Base of enumeration for benchmarks.
-j ornum_worker_threads	$1^*, 2,$	Total number of threads to use.
-1 orlatency*		Run (un)loaded latency benchmarks.
-n oriterations	1*, 2,	Number of iterations per benchmark.
-r orrandom_access		Use random-access load kernels.
-s orsequential_access		Use seq. or strided-access load kernels.
-t orthroughput*		Run throughput benchmarks.
-u orignore_numa		Only test NUMA node 0.
-v orverbose		Enable verbose standard output.
-w orworking_set_size	4*, 8,	Per-thread array size in KiB.
-L orlarge_pages		Use OS-defined large pages.
-R orreads*		Use read accesses for load kernels.
-W orwrites*		Use write accesses for load kernels.
$-S \text{ or }stride_size^{\dagger}$	$\pm 1^*, 2, 4,$	Stride length in multiples of chunk size.
	8, 16	Only applies to load kernels with $-s$.


Mark Gottscho | UCLA

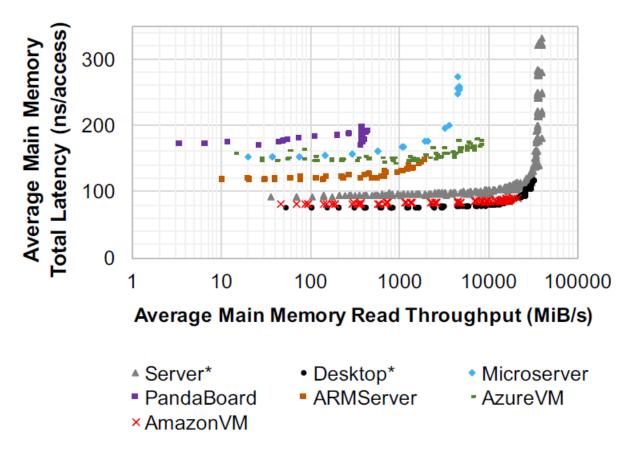
Experimental Platform Details

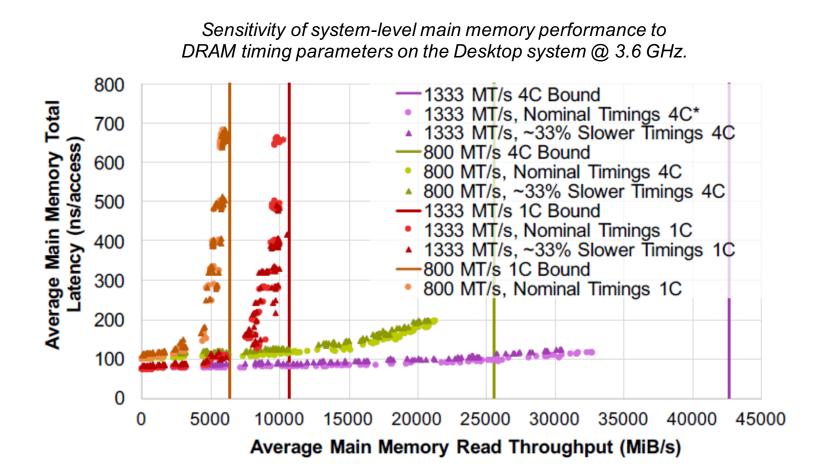
System N	Namo	ISA	CPU	No. Coros	CPU Freq.	1	L1\$		L	2\$	L3\$		\$ Blk	Process	os	NUMA	FCC
Deskta		x86-64	Intel Core i7-3820	4	3.6 GHz*,	er		ato		vate,	-	shared, 64 B		32 nm	Linux	HOMA	
Deskiop		w/ AVX	(Sandy Bridge-E)	4	1.2 GHz	-	split, private, 32 KiB, 8-way		-	B, 8-way	10 MiB, 20	/	04 D	52 mm	Linux		
Serve	er.	x86-64	Dual Intel Xeon	12	2.4 GHz		split, private,			vate,	shared		64 B	22 nm	Win.	 ✓ 	
Derve		w/ AVX2	E5-2600 v3 series	per CPU	2.4 0112	_	KiB, 8-		-	B, 8-way	30 MiB, 20	/	0112	22 1111		•	•
		,	(Haswell-EP)	per er e			, o	may	200 111	2, 0 may		, nag					
Microsen	rver	x86-64	Intel Atom S1240	2	1.6 GHz	sp	lit, priv	ate,	priv	vate,	-		64 B	32nm	Win.		 ✓
			(Centerton)			24 K	iB 6-wa	y data,	512 Kil	B, 8-way							
						32 K	iB 8-wa	y inst.									
PandaBoar	rd (ES)	ARMv7-A	TI OMAP 4460	2	$1.2~\mathrm{GHz}$	sp	olit, priv	ate,	sha	ared,	-		32 B	45 nm	Linux		
		w/ NEON	(ARM Cortex-A9)			32	KiB, 4-	way	1 N	MiB							
AzureV	M	x86-64	AMD Opteron	4	$2.1~\mathrm{GHz}$	-	olit, priv	· · · · · · · · · · · · · · · · · · ·	-	vate,	shared	/	64 B	45 nm	Linux		 ✓
			4171 HE				KiB, 2-	2	, ,		1 5						
Amazon	VM	x86-64	Intel Xeon E5-2666 v3	4	$2.9~\mathrm{GHz}$	-	olit, priv		-	vate,	shared,		64 B	22 nm	Linux		 ✓
4.0.10		w/ AVX2	(Haswell-EP)	4	1.0.011		KiB, 8-	-		B, 8-way	25 MiB, 20)-way	00 D	0	T ·		
ARMSer	rver	ARMv7-A	Marvell Armada 370	4	$1.2~\mathrm{GHz}$	split, private,		-	private, - 6 KiB, 4-way			32 B	?	Linux		?	
<u> </u>	1		(ARM Cortex-A9)	2.6	N T	32 KiB, 4/8-way (I/D) DPC RPD DIMM				-							
System		Cont	ig. Name	Memory	No.	DPC	RPD				AS - clk		CD - cll		- clk	nRAS	
Name				Type	Channels			Capaci	•	<i>/</i>	· · ·	<u>`</u>	CD - ns	/ \		(tRAS	
Desktop*			ominal Timings 4C	DDR3 U	4	2	2	2 GiE			(13.5 ns)		13.5 ns)	11 (16		24 (36.	
Desktop		· · ·	% Slower Timings 4C	DDR3 U	4	2	2	2 GiE			(18.0 ns)	```	(18.0 ns)			32(48.	
Desktop		1 1	ominal Timings $4C$	DDR3 U	4	2	2	2 GiE			(17.5 ns)		17.5 ns)	8 (20		16(40.	
Desktop		· · · ·	% Slower Timings 4C	DDR3 U	4	2	2	2 GiE		00 10	(25.0 ns)	10((25.0 ns)) 11 (27	7.5 ns	22 (55.	0 ns
Desktop		· · ·	ominal Timings 1C	DDR3 U	1	2	2	2 GiE		33 9	(13.5 ns)	9 (1	13.5 ns)	11 (16	6.5 ns	24 (36.	0 ns
Desktop			% Slower Timings 1C	DDR3 U	1	2	2	2 GiE		33 12	(18.0 ns)	12((18.0 ns)	15(22)	2.5 ns	32 (48.	0 ns
Desktop		· · ·	ominal Timings 1C	DDR3 U	1	2	2	2 GiE	3 80	00 7	(17.5 ns)	×	17.5 ns)	8 (20	.0 ns)	16(40.	0 ns
Desktop	800 MT/s, \approx 33% Slower Timings 1C		DDR3 U	1	2	2	2 GiE	8 80	00 10	(25.0 ns)	10((25.0 ns)	11 (27	7.5 ns	22 (55.	0 ns	
$Server^*$	1333 MT/s, Nominal Timings		DDR3 R	$4 {\rm \ per \ CPU}$	1	2	16 Gil	B 133	33 9	(13.5 ns)	9 (13.5 ns)	9 (13	.5 ns	24 (36.	$0 \text{ ns})^{-}$	
Server	erver 1333 MT/s , $\approx 33\%$ Slower Timings		DDR3 R	$4~{\rm per}~{\rm CPU}$	1	2	16 Gil	B 133	33 12	(18.0 ns)	12 ((18.0 ns)	12 (18	8.0 ns)	32 (48.	0 ns)	
Server	er 1600 MT/s, Nominal Timings		DDR3 R	$4~{\rm per}~{\rm CPU}$	1	2	16 Gil	B 160	00 11	(13.75 ns)	11 (1	13.75 ns) 11 (13	.75 ns)	29 (36.2	25 ns)	
Server	1600	$0 MT/s, \approx$	33% Slower Timings	DDR3 R	$4 {\rm \ per \ CPU}$	1	2	16 Gil	B 160	00 15	(18.75 ns)	15 (1	$18.75 \ \mathrm{ns}$) 15 (18	.75 ns)	38 (47.	5 ns)
Server	1	867 MT/s,	Nominal Timings	DDR3 R	$4 \ \mathrm{per} \ \mathrm{CPU}$	1	2	16 Gil	B 180	67 13	(13.92 ns)	13 (13.92 ns) 13 (13	.92 ns)	34 (36.4	42 ns)
Server	186	$7 MT/s, \approx$	33% Slower Timings	DDR3 R	$4~{\rm per}~{\rm CPU}$	1	2	16 Gil	B 180	67 18	(19.28 ns)	18 (1	19.28 ns) 18 (19	.28 ns)	46 (49.2	27 ns


Mark Gottscho | UCLA

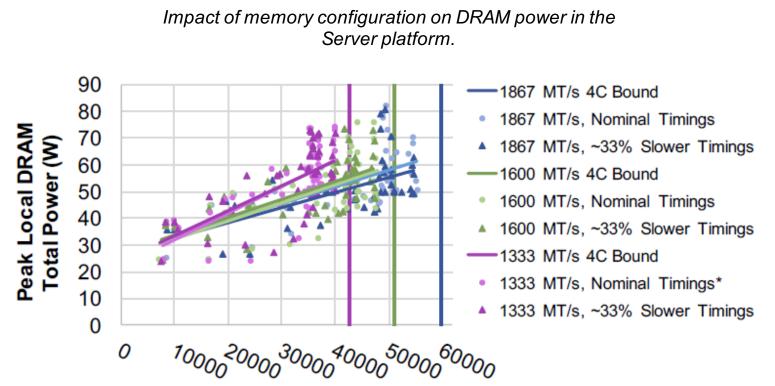
Case Study 1 (cont.): Characterization of the Memory Hierarchy for Cloud Subscribers

Stride Length (In Multiples of Load Width)


Case Study 1 (cont.): Characterization of the Memory Hierarchy for Cloud Subscribers


Mark Gottscho | UCLA

Case Study 2 (cont.): Cross-Platform Insights for Cloud Subscribers


Apples-to-apples comparison of main memory performance across seven different computing platforms

Case Study 3 (cont.): Impact of Tuning Platform Configurations for Cloud Providers

Case Study 3 (cont.): Impact of Tuning Platform Configurations for Cloud Providers

Average Local Main Memory Read Throughput (MiB/s)

Case Study 3 (cont.) Impact of Tuning Platform Configurations for Cloud Providers

Remote access: Up to 45% slower

channels: no impact

$\begin{array}{ll} \text{Mem. Channel Frequency} \rightarrow \\ \text{Platforms} \downarrow & \text{Timings} \rightarrow \end{array}$		1867~MT/s pprox 33%~Slow		1600 MT/s ≈ 33% Slow		1333 MT/s ≈ 33% Slow		800~MT/s pprox 33%~Slow
Server (NUMA Local, Lrg. Pgs.)	91.43	91.54	91.66	95.74	91.99*	97.61	-	-
Server (NUMA Remote, Lrg. Pgs.)	126.51	128.54	129.62	139.25	133.59^{*}	141.69	-	-
Desktop 4C @ 3.6 GHz	-	-	-	-	73.33*	81.91	97.21	110.89
Desktop 1C @ 3.6 GHz	-	-	-	-	72.38	80.94	97.36	109.56
Desktop 4C @ 1.2 GHz	-	-	-	-	109.65	118.25	131.86	145.76
Desktop 1C @ 1.2 GHz	-	-	-	-	108.44	117.09	131.85	144.46

Figure: <u>Sensitivity of unloaded latency</u> (ns/access) w.r.t. CPU & DDR3 frequency, DRAM timing, # DDR3 channels

CPU underclocked 3X: 50% higher DRAM lat.

DRAM timings 33% slower \rightarrow up to 12% slower overall

Benchmarks are	Benchmark	Config.	1 T	2 T	3 T	4T	
memory BW starved;	canneal	1333 MT/s 4C*	9.74%	9.02%	8.83%	8.89%	Memory has enough
relative impact of DRAM	canneal	,					BW; benchmarks
timings is LESS w/		, ,					appear latency-bound
more threads	streamcluster	800 MT/s 1C	8.10%	5.93%	2.63%	1.24%	
more inteaus	Гани	Limport of 220					

Figure: Impact of 33% slower DRAM timings

on memory-intensive PARSEC benchmarks with w.r.t # threads

Takeaway: Don't bother optimizing DRAM latency until bandwidth problem is solved! → Depends on relative balance of CPU/mem → Inconsistent with prior work [Meza DSN'15]