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Motivation: Memory is 
Important in Cloud Computing

• Cloud subscribers want to maximize app. performance
• Cloud providers want to minimize CapEx/OpEx given SLAs
• Needs pressure memory hierarchy: characterization is critical
• Memory benchmarking tools don’t meet key requirements

– (A) Access pattern diversity
– (B) Platform variability
– (C) Metric flexibility
– (D) Tool extensibility
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We propose X-Mem, a new tool!
Project homepage:
nanocad-lab.github.io/X-Mem
Source code:
github.com/Microsoft/X-Mem



X-Mem Feature
(A) Access Pattern Diversity
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1. Access granularity 32, 64, 128, 256, and 512-bit* chunk sizes
2. Access types Read or write
3. Access patterns Random, sequential and strided in ± 20-4 chunks
4. Parallelism Multithreaded
5. Page sizes Large and normal
6. Topologies CPU and memory NUMA nodes, core affinity

(D) Extensibility: Developers can easily add specialized 
patterns through new benchmark kernel functions

Degrees of Freedom

*As of v2.4.1, April 2016



X-Mem Feature
(B) Platform Variability
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1. OS Support Windows, GNU/Linux
2. Architectural 

support
x86, x86-64 with(out) AVX SIMD extensions, Xeon 
Phi*, ARMv7 with(out) NEON SIMD extensions,
ARMv8

• Portable Python-based build system using SCons

• (D) Extensibility
– OS and architecture ports are low effort
– Apples-to-apples memory hierarchy comparisons

*As of v2.4.1, April 2016



X-Mem Feature
(C) Metric Flexibility
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• Performance: X-Mem measures real performance of the 
memory hierarchy as could be seen by an application
– Distinct from performance counter or component-centric view
– Aggregate throughput 
– Unloaded latency
– Loaded latency

• Power
– Simple software hooks for custom power measurement hardware

• Statistics on each metric
– Mean, percentiles*, min/max*, etc. *As of v2.4.1, April 2016

• (D) Extensibility: fault injection & reliability studies, data-aware 
power/performance bookkeeping for NVMs, etc.



Case Study 1:
Characterization of the Memory Hierarchy 

for Cloud Subscribers
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• Cloud subscribers should measure and leverage:
• Cache micro-architecture
• System-level memory management

• Understanding these enables improved application 
performance:

• Workload partitioning among threads? 
• Working set size per thread?
• Data access patterns?
• When, where, and how to allocate memory?
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Landscape of the memory hierarchy for the 
Desktop platform.



Case Study 2:
Cross-Platform Insights for Cloud Subscribers
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• Cloud subscribers can use X-Mem to directly compare 
memory performance of very different platforms

• x86 vs. ARM instruction set
• Virtual vs. physical machines
• Wimpy vs. brawny hardware
• Apples-to-apples results from one tool

• This capability enables subscibers to:
• Choose a target cloud platform that best suits workload characteristics



Case Study 2:
Cross-Platform Insights for Cloud Subscribers
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Apples-to-apples comparison of cache hierarchy 
performance across seven different computing platforms



Case Study 3:
Impact of Tuning Platform Configurations for 

Cloud Providers
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• Cloud providers can use X-Mem to evaluate the sensitivity of 
system-level performance and energy to memory 
configurations

• Number of DRAM channels, DPC, RPD, channel frequency
• DRAM timing parameters – variation-aware memory tuning?

[Gottscho ESL’12, CODES+ISSS’12, TC’15, Chandrasekar DATE’14, Lee HPCA’15]
• Analyze throughput, unloaded and loaded latency, different access patterns, 

etc.

• This capability enables providers to:
• Optimally configure their platforms for different types of workloads
• Maximize performance/$, minimize TCO, etc.



Case Study 3:
Impact of Tuning Platform Configurations for 

Cloud Providers
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Sensitivity of system-level main memory performance to 
DRAM timing parameters on the Server system.



Summary
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X-Mem is a flexible tool for characterizing memory systems
Surpasses capabilities of all prior tools

Several key features enable broad usability
(A) Access pattern diversity, (B) Platform variability, 

(C) Metric flexibility, (D) Tool extensibility

Case studies for cloud subscribers and providers
Showed how X-Mem can help optimize application perf., choose optimal 

platforms, and provision/configure HW for low cost



14

THANK YOU!

Project homepage:
nanocad-lab.github.io/X-Mem

Source code:
github.com/Microsoft/X-Mem

CONTACT:
http://seas.ucla.edu/~gottscho
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BACKUP
SLIDES



X-Mem: A New Memory 
Characterization Tool
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• Object-oriented C++
• Caches through DRAM
• (A) Access pattern diversity
• (B) Platform variability
• (C) Metric flexibility
• (D) Tool extensibility
• Open-source
• User-friendly CLI & 

documentation
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Latest SW & documentation available @
nanocad-lab.github.io/X-Mem



Tool Comparison
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Main Memory System
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X-Mem (v2.2.3) 
Command-Line Interface
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Experimental Platform Details
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Case Study 1 (cont.):
Characterization of the Memory Hierarchy 

for Cloud Subscribers
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Single-thread strided L1D read throughput 
for the Desktop platform.



Case Study 1 (cont.):
Characterization of the Memory Hierarchy 

for Cloud Subscribers
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Relationship between NUMA and page size on the 
Server platform.



Case Study 2 (cont.):
Cross-Platform Insights for Cloud Subscribers
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Apples-to-apples comparison of main memory 
performance across seven different computing platforms



Case Study 3 (cont.):
Impact of Tuning Platform Configurations for 

Cloud Providers
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Sensitivity of system-level main memory performance to 
DRAM timing parameters on the Desktop system @ 3.6 GHz.



Case Study 3 (cont.):
Impact of Tuning Platform Configurations for 

Cloud Providers
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Impact of memory configuration on DRAM power in the 
Server platform.



Case Study 3 (cont.)
Impact of Tuning Platform Configurations for 

Cloud Providers
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Figure: Sensitivity of unloaded latency (ns/access) w.r.t. 
CPU & DDR3 frequency, DRAM timing, # DDR3 channels

Figure: Impact of 33% slower DRAM timings
on memory-intensive PARSEC benchmarks with w.r.t # threads

Remote access: Up to 45% slower # channels: no impact

CPU underclocked 3X:  50% higher DRAM lat. DRAM timings 33% slower
à up to 12% slower overall

Memory has enough 
BW; benchmarks 
appear latency-bound

Benchmarks are 
memory BW starved; 

relative impact of DRAM 
timings is LESS w/ 

more threads

Takeaway: Don’t bother optimizing DRAM latency until bandwidth problem is solved!
à Depends on relative balance of CPU/mem         à Inconsistent with prior work [Meza DSN’15]


