
X-Mem: A Cross-Platform and
Extensible Memory Characterization

Tool for the Cloud

Mark Gottscho1,2

Sriram Govindan3

Bikash Sharma3

Mohammed Shoaib2

Puneet Gupta1

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Uppsala, Sweden
April 19, 2016 – http://seas.ucla.edu/~gottscho

1UCLA
Los Angeles, CA, USA

2Microsoft Research
Redmond, WA, USA

3Microsoft
Redmond, WA, USA

Unless otherwise specified, all content throughout the presentation refers to X-Mem v2.2.3 as in the published paper.

Motivation: Memory is
Important in Cloud Computing

• Cloud subscribers want to maximize app. performance
• Cloud providers want to minimize CapEx/OpEx given SLAs
• Needs pressure memory hierarchy: characterization is critical
• Memory benchmarking tools don’t meet key requirements

– (A) Access pattern diversity
– (B) Platform variability
– (C) Metric flexibility
– (D) Tool extensibility

April 19, 2016 Mark Gottscho | UCLA 2

mlc

Motivation: Memory is
Important in Cloud Computing

• Cloud subscribers want to maximize app. performance
• Cloud providers want to minimize CapEx/OpEx given SLAs
• Needs pressure memory hierarchy: characterization is critical
• Memory benchmarking tools don’t meet key requirements

– (A) Access pattern diversity
– (B) Platform variability
– (C) Metric flexibility
– (D) Tool extensibility

April 19, 2016 Mark Gottscho | UCLA 3

mlc

We propose X-Mem, a new tool!
Project homepage:
nanocad-lab.github.io/X-Mem
Source code:
github.com/Microsoft/X-Mem

X-Mem Feature
(A) Access Pattern Diversity

April 19, 2016 Mark Gottscho | UCLA 4

1. Access granularity 32, 64, 128, 256, and 512-bit* chunk sizes
2. Access types Read or write
3. Access patterns Random, sequential and strided in ± 20-4 chunks
4. Parallelism Multithreaded
5. Page sizes Large and normal
6. Topologies CPU and memory NUMA nodes, core affinity

(D) Extensibility: Developers can easily add specialized
patterns through new benchmark kernel functions

Degrees of Freedom

*As of v2.4.1, April 2016

X-Mem Feature
(B) Platform Variability

April 19, 2016 Mark Gottscho | UCLA 5

1. OS Support Windows, GNU/Linux
2. Architectural

support
x86, x86-64 with(out) AVX SIMD extensions, Xeon
Phi*, ARMv7 with(out) NEON SIMD extensions,
ARMv8

• Portable Python-based build system using SCons

• (D) Extensibility
– OS and architecture ports are low effort
– Apples-to-apples memory hierarchy comparisons

*As of v2.4.1, April 2016

X-Mem Feature
(C) Metric Flexibility

April 19, 2016 Mark Gottscho | UCLA 6

• Performance: X-Mem measures real performance of the
memory hierarchy as could be seen by an application
– Distinct from performance counter or component-centric view
– Aggregate throughput
– Unloaded latency
– Loaded latency

• Power
– Simple software hooks for custom power measurement hardware

• Statistics on each metric
– Mean, percentiles*, min/max*, etc. *As of v2.4.1, April 2016

• (D) Extensibility: fault injection & reliability studies, data-aware
power/performance bookkeeping for NVMs, etc.

Case Study 1:
Characterization of the Memory Hierarchy

for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 7

• Cloud subscribers should measure and leverage:
• Cache micro-architecture
• System-level memory management

• Understanding these enables improved application
performance:

• Workload partitioning among threads?
• Working set size per thread?
• Data access patterns?
• When, where, and how to allocate memory?

Case Study 1:
Characterization of the Memory Hierarchy

for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 8

Landscape of the memory hierarchy for the
Desktop platform.

Case Study 2:
Cross-Platform Insights for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 9

• Cloud subscribers can use X-Mem to directly compare
memory performance of very different platforms

• x86 vs. ARM instruction set
• Virtual vs. physical machines
• Wimpy vs. brawny hardware
• Apples-to-apples results from one tool

• This capability enables subscibers to:
• Choose a target cloud platform that best suits workload characteristics

Case Study 2:
Cross-Platform Insights for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 10

Apples-to-apples comparison of cache hierarchy
performance across seven different computing platforms

Case Study 3:
Impact of Tuning Platform Configurations for

Cloud Providers

April 19, 2016 Mark Gottscho | UCLA 11

• Cloud providers can use X-Mem to evaluate the sensitivity of
system-level performance and energy to memory
configurations

• Number of DRAM channels, DPC, RPD, channel frequency
• DRAM timing parameters – variation-aware memory tuning?

[Gottscho ESL’12, CODES+ISSS’12, TC’15, Chandrasekar DATE’14, Lee HPCA’15]
• Analyze throughput, unloaded and loaded latency, different access patterns,

etc.

• This capability enables providers to:
• Optimally configure their platforms for different types of workloads
• Maximize performance/$, minimize TCO, etc.

Case Study 3:
Impact of Tuning Platform Configurations for

Cloud Providers

April 19, 2016 Mark Gottscho | UCLA 12

Sensitivity of system-level main memory performance to
DRAM timing parameters on the Server system.

Summary

April 19, 2016 Mark Gottscho | UCLA 13

X-Mem is a flexible tool for characterizing memory systems
Surpasses capabilities of all prior tools

Several key features enable broad usability
(A) Access pattern diversity, (B) Platform variability,

(C) Metric flexibility, (D) Tool extensibility

Case studies for cloud subscribers and providers
Showed how X-Mem can help optimize application perf., choose optimal

platforms, and provision/configure HW for low cost

14

THANK YOU!

Project homepage:
nanocad-lab.github.io/X-Mem

Source code:
github.com/Microsoft/X-Mem

CONTACT:
http://seas.ucla.edu/~gottscho

15

BACKUP
SLIDES

X-Mem: A New Memory
Characterization Tool

April 19, 2016 Mark Gottscho | UCLA 16

• Object-oriented C++
• Caches through DRAM
• (A) Access pattern diversity
• (B) Platform variability
• (C) Metric flexibility
• (D) Tool extensibility
• Open-source
• User-friendly CLI &

documentation

Hardware

O
pe

ra
tin

g
Sy

st
em

Load
Worker

Latency
Worker

Windows DRAM
Power Reader (E)

Power
Reader

Memory
Worker

Runnable

Thread

Delay-Injected Latency
Benchmark (E)

Latency
Benchmark

Option Parser Benchmark

Benchmark
ManagerConfigurator

main ()

Timers Benchmark Kernel
Functions

Delay-Injected
Benchmark Kernel

Functions (E)

Object Owner/
Function Caller

Class Inheritance

Function

Class

X-Mem

Throughput
Benchmark

X-Mem: A New Memory
Characterization Tool

April 19, 2016 Mark Gottscho | UCLA 17

• Object-oriented C++
• Caches through DRAM
• (A) Access pattern diversity
• (B) Platform variability
• (C) Metric flexibility
• (D) Tool extensibility
• Open-source
• User-friendly CLI &

documentation

Hardware

O
pe

ra
tin

g
Sy

st
em

Load
Worker

Latency
Worker

Windows DRAM
Power Reader (E)

Power
Reader

Memory
Worker

Runnable

Thread

Delay-Injected Latency
Benchmark (E)

Latency
Benchmark

Option Parser Benchmark

Benchmark
ManagerConfigurator

main ()

Timers Benchmark Kernel
Functions

Delay-Injected
Benchmark Kernel

Functions (E)

Object Owner/
Function Caller

Class Inheritance

Function

Class

X-Mem

Throughput
Benchmark

Latest SW & documentation available @
nanocad-lab.github.io/X-Mem

Tool Comparison

April 19, 2016 Mark Gottscho | UCLA 18

Main Memory System

April 19, 2016 Mark Gottscho | UCLA 19

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

CPU Core
L1D$L1I$

L2$

Shared L3$

L2$ L2$ L2$

Main
Memory

Main
Memory

Main
Memory

Main
Memory

Memory Controller(s)

N
U

M
A

N
od

e
0

Breakdown of Main Memory

Memory
Controller

Channels

DIMM (Socketed)

R
a

n
k

(L
o

ck
st

e
p

g
ro

u
p

 o
f

D
R

A
M

s)

DRAM
Chip

Row Buffer

Array

Rows

Columns

Bank
(Independent,

Lockstep within
rank)

Data (8 1T1C Bitcells)

Location

64b DATA (+8b ECC parity)

8b

8b

8b

8b

8b

8b

8b

8b

Channel: CMD, ADDR, CLK, RANK_SEL
(Shared among all ranks and DRAMs in the channel)

8b

X-Mem (v2.2.3)
Command-Line Interface

April 19, 2016 Mark Gottscho | UCLA 20

Experimental Platform Details

April 19, 2016 Mark Gottscho | UCLA 21

Case Study 1 (cont.):
Characterization of the Memory Hierarchy

for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 22

Single-thread strided L1D read throughput
for the Desktop platform.

Case Study 1 (cont.):
Characterization of the Memory Hierarchy

for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 23

Relationship between NUMA and page size on the
Server platform.

Case Study 2 (cont.):
Cross-Platform Insights for Cloud Subscribers

April 19, 2016 Mark Gottscho | UCLA 24

Apples-to-apples comparison of main memory
performance across seven different computing platforms

Case Study 3 (cont.):
Impact of Tuning Platform Configurations for

Cloud Providers

April 19, 2016 Mark Gottscho | UCLA 25

Sensitivity of system-level main memory performance to
DRAM timing parameters on the Desktop system @ 3.6 GHz.

Case Study 3 (cont.):
Impact of Tuning Platform Configurations for

Cloud Providers

April 19, 2016 Mark Gottscho | UCLA 26

Impact of memory configuration on DRAM power in the
Server platform.

Case Study 3 (cont.)
Impact of Tuning Platform Configurations for

Cloud Providers

April 19, 2016 Mark Gottscho | UCLA 27

Figure: Sensitivity of unloaded latency (ns/access) w.r.t.
CPU & DDR3 frequency, DRAM timing, # DDR3 channels

Figure: Impact of 33% slower DRAM timings
on memory-intensive PARSEC benchmarks with w.r.t # threads

Remote access: Up to 45% slower # channels: no impact

CPU underclocked 3X: 50% higher DRAM lat. DRAM timings 33% slower
à up to 12% slower overall

Memory has enough
BW; benchmarks
appear latency-bound

Benchmarks are
memory BW starved;

relative impact of DRAM
timings is LESS w/

more threads

Takeaway: Don’t bother optimizing DRAM latency until bandwidth problem is solved!
à Depends on relative balance of CPU/mem à Inconsistent with prior work [Meza DSN’15]

