Evaluating and Exploiting Impacts of Dynamic Power Management Schemes on System Reliability

Liangzhen Lai, Vikas Chandra* and Puneet Gupta UCLA Electrical Engineering Department ARM Research*

Radiation-Induced Soft Error

- Caused by Alpha particles or neutrons

 Results in flipping logic states or glitches
- Memory
 - Well-protected if with ECC
- Flip-Flops (FFs)
 - Expensive to fix
- Soft error rate (SER) is measured by failures in time (FIT)
 - Failures per billion device-hours

What Can Affect System Reliability?

- Component FIT rate depends on:
 - Circuit properties, e.g., schematic, layout
 - Operating conditions, i.e., voltage, location/altitude
- System FIT rate can be affected by:
 - Ambient
 - Dynamic power management (DPM)

Hardware Support for Dynamic Power Management

- Voltage scaling
 - L1 cache tie to V_{core}
 - Higher performance
 - L1 cache tie to V_{L2}
 - More power saving
- Power gating
 - Dumping states to memory
 - Simpler
 - Use state-retention FF
 - Faster

Impacts of Hardware Power States

- Voltage states

 Affects core SER
 Affects mem SER if
 L1 is tied to the core
- Sleep states
 - Mem SER
 - Increase if SRAM goes to retention mode
 - Core SER
 - Zero if power gated
 - Increase if using retention FFs

5

JIT vs RFTS

- Two power management approaches:
 - Run-Fast-Then-Stop (RFTS): complete the workload with nominal performance and then go to certain sleep states for the remaining slack to reduce power
 - Just-In-Time (JIT): adjust the peak performance to elongate the runtime with lower power consumption

Outline

- Motivation
- Evaluating DPM on System Reliability
 - Evaluation Platform

Results

- Exploiting DPM for System Reliability
 - Virtual SER monitor
 - Forbidden state based policy
 - Results
- Conclusion

Evaluation Platform Choices

- Running system software (i.e., OS)
 Simulators are too slow
- Interaction with power management policies

 Need accurate timing models
- Targeting different hardware configuration

 Designing hardware for each configuration is
 infeasible
- Using hardware development board
 - Running applications with OS
 - Emulating the power/SER

Reliability Evaluation

• Hardware:

	Retention FF	L1 Rail	L1 ECC
Case I	No	Same as core	No
Case II	No	Separate	No
Case III	Yes	Same as core	No
Case IV	No	Same as core	Yes

Software power management schemes

NanoCAD Lab

9

Building An Evaluation Platform

- BeagleBone Black
 - Cortex-A8
 - Standard Linux kernel 3.12

- Supports both CPUFreq and CPUIdle
- Power/SER models based on 45nm technology

CPUIdle states (C-states)

Frequency	Voltage	Latency				
1000 MHz	0.90V	$2.1\mathrm{ms}$				
800 MHz	0.82V	$2.1\mathrm{ms}$				
720 MHz	0.80V	$2.2\mathrm{ms}$				
600 MHz	0.76V	$2.2\mathrm{ms}$				
300 MHz	0.72V	$3.2 \mathrm{ms}$				

(PLIFred states (P-states)

State	Description	Exit Latency	Target Residency
C1	WFI	68us	150us
C2	clock gating	130us	200us
C3	core power gating	$530 \mathrm{us}/1060 \mathrm{us}^2$	800us/ 1450us
C4	core power gating with SRAM reten- tion	$650 us/1180 us^2$	1000us/ 1550us

Embedding Bookkeeping Module

Available at: https://github.com/nanocad-lab/JIT-RFTS

Reliability Evaluation

- - core SER ---mem SER -power Case I Case II 1.5 1.5 Normalized value Normalized value 1 1 0.5 0.5 0 0 20% 60% 80% 0% 40% 100% 0% 20% 40% 60% 80% 100% Workload intensity Workload intensity Case III Case IV 1.5 3 Normalized value Normalized value 2 1 0.5 1 0 0 20% 80% 20% 60% 80% 100% 0% 40% 60% 100% 0% 40% Workload intensity Workload intensity

NanoCAD Lab

Outline

- Motivation
- Evaluating DPM on System Reliability
 - Evaluation Platform

Results

- Exploiting DPM for System Reliability
 - Virtual SER monitor
 - Forbidden state based policy
 - Results
- Conclusion

Monitoring SER

• Soft error rate (SER) depends on the altitude

$$F_{alt}(d) = exp(\frac{d_{SL} - d}{L_n})$$

- Sources of altitude difference
 - Same device used at different locations
 - Same types of device used at different locations
- Hardware SER monitor is infeasible
 - Rare occurrence (< 1 per month per MB)
- System-level Virtual SER monitor
 - Altitude/Location sensors (GPS, barometer etc.)
 - Cloud-based services (network capabilities)

Embedding Reliability Into DPM

- Considerations:
 - Effective
 - Non-intrusive
- Forbidden-state based policy
 - Preserve existing structures
 - Enabling/Disabling power states depending on current SER

Static/Dynamic Policy

- Forbidden-state based policy
 - Enable/Disable state based on current SER
 - Overly pessimistic to limit instantaneous SER
- Dynamic policy
 - Limit accumulated SER over a fixed period
 - Dynamically enable/disable power states

Experimental Results

NanoCAD Lab

Policy Effectiveness Evaluation

- Calculating optimal P-state and C-state selection

 Offline
 - Formulated and solved as ILP
- Compare the power difference between our policy and optimal P-state and C-state selections

Power overhead compared to optimal state selection

Benchmark	P-state optimal		C-state optimal	
Deneminark	Mean	Max	Mean	Max
Web browsing	0.08%	0.42%	0.72%	2.18%
MPEG 4 decoding	0.14%	0.73%	0.63%	2.47%
FFPlay	0.18%	1.31%	0.58%	2.51%
3D Image rendering	0.14%	1.17%	0.53%	1.89%

Conclusion

- Evaluating DPM on System Reliability
 Building a evaluation Platform
- Exploiting DPM for System Reliability
 - JIT-RFTS trade-offs
 - 2.2X SER reduction with minimal overhead
 - Simple yet effective policies
 - <3% overhead compared to offline optimal
- Future work will integrate more reliability phenomena
- The kernel module code is available for download at https://github.com/nanocad-lab/JIT-RFTS

Q&A

