Comprehensive Defect Avoidance Solution for Mitigating EUV Mask Defects

Abde Ali Kagalwalla and Puneet Gupta Electrical Engineering Department, UCLA

Outline

• EUV Mask Defect Mitigation and it's Limitations

Proposed Defect Avoidance Method

• Experimental Results

EUV Mask Blank Defects

Source: Clifford and Neureutheur, SPIE 2010

- 3.5nm high defect can cause 20nm CD change
- Caused mainly due to substrate imperfections
- Current defectivity level of 10-50 defects per mask of size > 50nm width
- Many defects missed by inspection tool
- Repair expensive

Classification of EUV Mask Defect Mitigation Strategies

Defect Avoidance Based EUV Mask Defect Mitigation

Flexibility of Defect Avoidance Methods

Flexibility of Defect Avoidance Methods: Pattern Shift

Move the entire mask blank (relative to mask pattern) in X-Y direction

Categories of Defect Avoidance Methods: Rotation

Flexibility of Defect Avoidance Methods: Mask Floorplanning

Move each die copy inside the mask field \rightarrow Different layers of same design must be moved together

Prior Defect Avoidance Methods

- Simulated Annealing Based Floorplanning [IEEE TSM'13]
 - Shift die copies in grid-line based on CD cost metric
 - Cannot handle arbitrary angle rotation
 - Makes discrete jumps instead of exploring continuous space
- Prohibited Region based Pattern Shift + Rotation [ASP-DAC'12, ICCAD'12, JVST'12]
 - Constructs prohibited rectangles and then finds minimum overlap location
 - Limited to small-angle rotation, cannot handle floorplanning
 - Prohibited rectangle construction pessimistic at corners of absorber
- Need a method that can systematically explore all degrees of freedom for defect avoidance

Outline

• EUV Mask Defect Mitigation and it's Limitations

Proposed Defect Avoidance Method

• Experimental Results

Problem Formulation: Pattern Shift and Rotation Optimization Variables

For each EUV layer *l* of given design, define three variables:
 Xp_l, *Yp_l*, θp_l

 For each row (r) and column (c) relative to bottom left coordinate of field define Xf_c & Yf_r

Find the value of Xp_l , Yp_l , θp_l , $Xf_c \& Yf_r$ such that CD impact of every defect-layout edge pair is less than CD tolerance

Spatial Constraints

 Reticle Boundary Constraints → Entire mask pattern inside usable reticle area

$$\pm Xp_l \pm \frac{W_F}{2} \theta p_l \le \frac{W_M - W_F}{2}$$

$$\pm Yp_l \pm \frac{H_F}{2} \theta p_l \le \frac{H_M - H_F}{2}$$

2. Field Boundary Constraints \rightarrow All die copies within field

 $Xf_{C-1} + W_D \le W_F \qquad \qquad Yf_{R-1} + H_D \le H_F$

3. Die Overlap Constraints \rightarrow Die copies must not overlap

$$Xf_c - Xf_{c-1} \ge W_D$$
 $Yf_r - Yf_{r-1} \ge H_D$

4. Maximum Rotation Constraint

 $\theta_{min} \le \theta p_l \le \theta_{max}$

Modeling CD Impact of Defects

- Distance between defect & absorber edge(r) $\rightarrow f(Xp_l, Yp_l, \theta p_l, Xf_c, Yf_r)$
- $\Delta CD = A \left(He^{-\frac{1}{(W/2)^2}} + B \right)$

NanoCAD Lab

- Proposed by Clifford & Neureuther, SPIE 2007 for symmetric Gaussian defects
- Proportional to defect height at absorber edge
- 0.5X for absorber-covered defect
- Want $\Delta CD \leq CD_{tol}$ for every defect layoutEdge pair
 - Non-convex constraint \rightarrow Relax using sigmoid
- $Cost = \sum_{All \ defects} \sum_{All \ shape \ edges} sig(\Delta CD CD_{tol})$
 - Actually needs to be computed only for a small region around a defect

Absorber Pattern

Global Optimization Method for Defect Avoidance

Combines global search (random point generation) with local search (gradient descent) to cover the feasible space for minimizing nonconvex objective

Hit-and-Run based Random Walk

- Objective → Generate random starting points such that all spatial linear constraints are satisfied
- Hit-and-run based random walk \rightarrow Uniformly samples linear polytope
 - 1. Draw line passing through current solution with random direction
 - 2. Find part of line inside the linear polytope
 - 3. Uniformly pick a random point on the line segment
- Given enough iterations entire linear polytope is covered

Computation of Gradient of CD Impact Cost Function

$\begin{split} \widetilde{X_d} &= X_d \cos(\theta p_l) - Y_d \sin(\theta p_l) - Xp_l \\ \widetilde{X_d} &= X_d \sin(\theta p_l) + Y_d \cos(\theta p_l) - Yp_l \\ Xf_e &= Xf_c + X_e \\ Yf_e &= Yf_r + Y_e \\ Z &= \frac{\partial (Cost)}{\partial (r^2)} \\ \end{split}$
--

- Must be aggregated over all relevant defect absorber edge pairs
- Runtime dominated by layout query of shapes around each defect
- Upfront store all shapes close to defect before each round of gradient descent

Outline

• EUV Mask Defect Mitigation and it's Limitations

Proposed Defect Avoidance Method

• Experimental Results

Experimental Setup

- Method implemented in C++ using OpenAccess and Boost Polygon APIs
- Testcase Layout → ARM Cortex M0 synthesized, placed and routed using Synopsys 32nm Library (Scaled to 8nm technology node)
- 100 randomly generated Gaussian defect maps with each defect of height 2nm and full width half maximum 50nm
- Mask Yield → Percentage of defect maps that are completely fixed
- Allowed degrees of freedom: Maximum pattern shift 20µm, maximum scribe area 1%, maximum rotation angle 6°

Comparison with Prior Methods for Polysilicon Layer

- Significantly better than simulated annealing due to small angle rotation and continuous move instead of discrete jumps
- More than 2X better mask yield than prohibited region based method due to floorplanning and lack of pessimism of prohibited region construction

- Prohibited Region Based Pattern Shift + Rotation
- Simulated Annealing Based Floorplanning + Pattern Shift
- Proposed Defect Avoidance Solution (Pattern Shift + Rotation + Floorplanning)

Impact of Multiple Layer

- Mask yield defined as percentage of cases when masks of all the given layers work
- Yield limited mainly by polysilicon layer → Regularity of polysilicon layer makes it mask yield limiting

Comparing Degrees of Freedom for Defect Avoidance

- Maximum pattern shift the most important spatial constraint for improving mask yield
- Benefit from rotation and floorplanning tapers off beyond a certain value

Mask Yield for polysilicon layer, 40-defect mask

Conclusions

- Novel EUV mask defect avoidance method
 - Can simultaneously handle pattern shift, rotation and floorplanning
 - Method allows continuous shifts and arbitrary angle rotation
- Formulated as a non-convex optimization problem and solved using a combination of random search and gradient descent
 - Hit-and-run based random walk to handle spatial constraints
- More than 60%-point better mask yield compared to prior work for 40-defect mask, polysilicon layer of 8nm ARM Cortex M0 layout

QUESTIONS

Backup Slides

Prior Work → Simulated Annealing Based Mask Floorplanning and Pattern Shift [TSM'13]

- Define grid-line moves which move the connected dies in small steps
 - Valid moves \rightarrow Dies don't overlap
 - Invalid moves \rightarrow Dies overlap
- Compute cost for each potential valid move
- Choose a valid move based on simulated annealing criteria

Limitations

- Cannot handle arbitrary angle rotation
- Exploring continuous space with discrete jumps is computationally expensive

Prior Work → Prohibited Region Based Pattern Shift + Rotation Prof. Martin Wong (UIUC)

- Rotation → For each potential rotation angle, rotate defects and repeat pattern shift [ICCAD'12]
 - Only small angle rotation, discretization of continuous angle values
- Hard to handle mask floorplanning with this approach
- Prohibited region construction is pessimistic at shape corners
 - CD impact of defect depends on Euclidean distance from shape edge

Gradient Descent Speedup

- Runtime for computing gradient dominated by layout query for shapes that are close to defects
- But gradient descent only makes small moves
- At each random start, store all shapes within distance D from defect center for each defect
 - D = 3*defectWidth + numGradientIterations*gradientStepSize

