Comprehensive Die-Level Assessment of Design Rules and Layouts

Rani Ghaida^α, Yasmine Badr^β, Mukul Gupta^γ, Ning Jin^α, <u>Puneet Gupta^β</u>

> ^αGlobal Foundries, Inc. ^β<u>EE Department, UCLA</u> ^γQualcomm, Inc.

> > puneet@ee.ucla.edu

Introduction

- Impact of new technologies on design is inferred from Design Rules (DRs)
- Process of evaluation of **DRs** is largely unsystematic and empirical
- Interaction of DRs with layouts, performance, margins, yield requires a fast and systematic evaluation method

Prior Work

UCLA_DRE (ICCAD'09,TCAD'12)

- A framework for early exploration of design rules, patterning technologies, layout methodologies, and library architectures
- Standard cell-level evaluation

Shortcomings

- Not every change in cell area results in a corresponding change in chip area
- Chip area can be affected by buffering and gate sizing to meet timing constraints

Prior Work

 Chip area can be affected by buffering and gate sizing to meet timing constraints

Chip-DRE: Chip level Design Rule Evaluator

- Generates virtual standard-cell library
- Employs semi-empirical and machine-learningbased models
- Good Chips per Wafer (GCPW)
 - unified metric for area, performance, variability and functional yield metrics

$$\frac{\text{wafer}_\text{area}}{\text{chip}_\text{area}} \times \text{yield}$$

FLOW OF CHIP-DRE

NanoCAD Lab

puneet@ee.ucla.edu

9

Cell Delay-to-Area Model

- Addresses effect of timing optimization during physical synthesis
- Predicts total cell-area scaling factor as celldelay is scaled
- Based on Machine learning: Neural Network
- Features:
 - number of instances on critical path,
 - average fanout, average interconnect length,
 - average delay and area of gates on critical path,
 - utilization and timing constraint,
 - ratio between area of critical paths to total cell area and
 - delay scaling factor

Cell Delay-to-Area Model

- Addresses effect of timing optimization during physical synthesis
- Predicts total cell-area scaling factor as celldelay is scaled
- Based on Machine learning: Neural Network

Cell-area to Chip-area Model

- Semi-empirical model to estimate chip-area in terms of cellarea
- Accounts for routing-limited designs
- Coefficients fitted from P&R experiments
 - Use AEGR (Area estimation using Global Routing)
 - Estimate maximum utilization such that design is routable
 - Up to 7x speedup

$$y = x + (y0 - x0) \times (\frac{x0}{x})^{\frac{x0}{y0 - x0}}$$
 for $x > x0$,

$$y = y0$$
 for $x \le x0$.

x : total cell-areay : chip-areax0, y0 : fitting coefficients

Cell-area to Chip-area Model

- Semi-empirical model to estimate chip-area in terms of cellarea
- Accounts for routing-limited designs
- Coefficients fitted from P&R experiments
 - Use AEGR (Area estimation using Global Routing)
 - Estimate maximum utilization such that design is routable
 - Up to 7x speedup

$$y = x + (y0 - x0) \times \left(\frac{x0}{x}\right)^{\frac{x0}{y0 - x0}}$$
 for $x > x0$,

x : total cell-areay : chip-areax0, y0 : fitting coefficients

NanoCAD Lab

y

puneet@ee.ucla.edu

SAMPLE STUDIES USING CHIP-DRE

Well-to-active Spacing Rule Exploration

- As Well-to-active spacing rule increases:
 - Cell area increases
 - Cell delay decreases due to well proximity effect
- Dependence of GCPW and chip-area on the rule value is non-monotone!
- Verified against PR runs, with max error of 3%

FinFET Fin-Pitch Study

- Fin pitch effect on chip area of FPU
- Fin pitch of 60nm through 100nm, cell area is steeply increasing while chip area is slightly changing

Local Interconnect-to-poly Spacing Study

- As LI-to-poly space increases
 - Cell area increases
 - Cell delay changes: capacitive coupling decreases but diffusion capacitance may increase
- Study shows cell-area increase dominates over potential chip-area decrease

Conclusion

 Introduced Chip-DRE framework for fast and systematic evaluation of design rules and library architectures at chip-scale

Future Work

- Include Power optimization
- Extend to back-end rules and use Chip-DRE to develop DR and library projections for 5nm node

QUESTIONS ?

BACKUP

Cell Delay Estimation

NanoCAD Lab

puneet@ee.ucla.edu

Yield Estimator

- Using DRE
- Considers probability of survival from:
 - Overlay error: Normal distribution
 - Random Particle Defects: Critical area analysis + negative binomial yield model
 - Contact hole failure: Poisson distribution

Numeric Results for WPE Experiment

Well-to- active spacing [nm]	Run-time (SPR) [min]	Cell-Area (Chip-DRE)	Chip-Area (Chip-DRE) [um ²]	Chip-Area (SPR) [um²]	Error [%]	GCPW (Chip- DRE)
---------------------------------------	-------------------------	-------------------------	---	-----------------------------	--------------	---------------------

140	118	28171	30364	30130	0.8	667
185	356	28171	29709	29460	0.8	681
200	240	32527	33008	33913	-3	612
210	207	32554	32787	33554	-2	616

Variability

NanoCAD Lab

puneet@ee.ucla.edu

Variability

• Current variability index:

$$\Delta(\frac{W}{L}) = \frac{\sum_{allgates} \left| \Delta(\frac{W}{L})_i \right|}{(\frac{W_{tot}}{L})_{ideal}}$$

 Modeling delta W/L for each source of variability from literature (tapering, diffusion and poly rounding, CD variability)

Manufacturability

- Manufacturability Index for evaluating DRs is probability of survival (POS) from three major sources of failure
 - contact-defectivity (a.k.a. contact-hole failure);
 - overlay error (i.e. misalignment between layers)
 coupled with lithographic line-end shortening (a.k.a. pull-back);
 - random particle defects.

Manufacturability (cont'd)

- Contact hole yield follows poisson yield model: Y=Y0*e^(-lambda)
 Lambda is average # failed contacts=# contacts * failure rate.
- Overlay vector components in x and y directions are described by a normal distribution with zero mean & 3σ
- We compute POS from overlay causing: failure to connect between contact and poly/M1/diffusion, gate-to-contact short defect, and always-on device caused by poly-to-diffusion overlay error
- For failure caused by random particles, critical area analysis for open and short defects at M1/poly/contact layers and short defects between gates and diffusion-contacts.
- Yield=yield_contact*yield_overlay*yield3_randomParticles;

