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Introduction

* Impact of new technologies on design is
inferred from Design Rules (DRs)

* Process of evaluation of DRs is largely
unsystematic and empirical

* Interaction of DRs with layouts, performance,
margins, yield requires a fast and systematic

evaluation method
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Prior Work
UCLA _DRE (ICCAD’09 ,TCAD’12)

- Aframework for early exploration of design rules,
patterning technologies, layout methodologies, and
library architectures

« Standard cell-level evaluation
Shortcomings

* Not every change in cell area results in a
corresponding change in chip area

« Chip area can be affected by buffering and gate
sizing to meet timing constraints

NanoCAD Lab puneet@ee.ucla.edu



Prior Work
UCLA _DRE (IC&ADAT i as i 2)
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« Chip area can be affected by buffering and gate
sizing to meet timing constraints
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Chip-DRE: Chip level Design Rule Evaluator

» Generates virtual standard-cell library

* Employs semi-empirical and machine-learning-
based models

 Good Chips per Wafer (GCPW)

— unified metric for area, performance, variability
and functional yield metrics

wafer area < yield

chip_area
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FLOW OF CHIP-DRE

NanoCAD Lab UCLA



Chip-DRE Flow
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Chip-DRE Flow
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- * RC approximation
Librar| . gjmore Delay
LeVv . current variability

Chip-DRE Flow
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Cell Delay-to-Area Model

* Addresses effect of timing optimization during
physical synthesis

* Predicts total cell-area scaling factor as cell-
delay is scaled

- Based on Machine learning: Neural Network

 Features:

— number of instances on critical path,

— average fanout, average interconnect length,

— average delay and area of gates on critical path,

— utilization and timing constraint,

— ratio between area of critical paths to total cell area and
— delay scaling factor
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Cell Delay-to-Area Model

Addresses effect of timing optimization during
physical synthesis

Predicts total cell-area scaling factor as cell-
delay is scaled

Based on Machine learning: Neural Network
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Chip-DRE Flow

Design Rule Cell Usage Library Transistor-
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Cell-area to Chip-area Model

«  Semi-empirical model to estimate chip-area in terms of cell-
area

« Accounts for routing-limited designs

« Coefficients fitted from P&R experiments
— Use AEGR (Area estimation using Global Routing)

« Estimate maximum utilization such that design is routable

* Upto 7x speedup X : total cell-area
20y —z0 _ . chip-
= x4 (y0 — z0) x (—) v0—=0 for x > z0, y - chip-area
£ x0, yO0 : fitting coefficients

= 90 for z <= 20.
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Cell-area to Chip-area Model
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Chip-DRE Flow
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SAMPLE STUDIES USING
CHIP-DRE
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Well-to-active Spacing Rule Exploration

* As Well-to-active spacing rule increases:
— Cell area increases
— Cell delay decreases due to well proximity effect

- Dependence of GCPW and chip-area on the rule
value is non-monotone!

* Verified against PR runs, with max error of 3%
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FINFET Fin-Pitch Study

 Fin pitch effect on chip area of FPU

* Fin pitch of 60nm through 100nm, cell area is
steeply increasing while chip area is slightly

changing
* Error <5%

NanoCAD Lab
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Local Interconnect-to-poly Spacing Study

* As LI-to-poly space increases
— Cell area increases
— Cell delay changes: capacitive coupling decreases
but diffusion capacitance may increase
« Study shows cell-area increase dominates over
potential chip-area decrease
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Conclusion

* Introduced Chip-DRE framework for fast and
systematic evaluation of design rules and library
architectures at chip-scale

Future Work

* Include Power optimization

- Extend to back-end rules and use Chip-DRE to
develop DR and library projections for 5nm node
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QUESTIONS ?
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BACKUP
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Cell Delay Estimation
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Yield Estimator

- Using DRE
» Considers probability of survival from:

— Overlay error: Normal distribution

— Random Particle Defects: Critical area analysis +
negative binomial yield model

— Contact hole failure: Poisson distribution
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Numeric Results for WPE Experiment

Well-to- Run-time Cell-Area Chip-Area Chip-Area Error GCPW (Chip-
active (SPR) [min]  (Chip-DRE) (Chip-DRE) (SPR) [%] DRE)
spacing [um?] [um?]
[nm]
140 118 28171 30364 30130 0.8 667
185 356 28171 29709 29460 0.8 681
200 240 32527 33008 33913 -3 612
210 207 32554 32787 33554 -2 616
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Variability

Drawn poly

Pull-back
[~ +overlay
— Tapering
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Variability

» Current variability index:

W Zallgates A( % )z
A(_) — 7
L (%&)ideal

* Modeling delta W/L for each source of variability
from literature (tapering, diffusion and poly
rounding, CD variability)
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Manufacturability

« Manufacturability Index for evaluating DRs is
probability of survival (POS) from three major
sources of failure

— contact-defectivity (a.k.a. contact-hole failure);

— overlay error (i.e. misalignment between layers)
coupled with lithographic line-end shortening (a.k.a.
pull-back);

— random particle defects.
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Manufacturability (cont’d)

« Contact hole yield follows poisson yield model: Y=Y0*e”(-lambda)
Lambda is average # failed contacts=# contacts * failure rate.

- Overlay vector components in x and y directions are described by a
normal distribution with zero mean & 30

«  We compute POS from overlay causing: failure to connect between
contact and poly/M1/diffusion, gate-to-contact short defect, and
always-on device caused by poly-to-diffusion overlay error

- For failure caused by random particles, critical area analysis for
open and short defects at M1/poly/contact layers and short
defects between gates and diffusion-contacts.

* Yield=yield contact*yield overlay*yield3 _randomParticles;
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