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Introduction 
•  Impact of new technologies on design is 

inferred from Design Rules (DRs) 

•  Process of evaluation of DRs is largely 
unsystematic and empirical 

•  Interaction of DRs with layouts, performance, 
margins, yield requires a fast and systematic 
evaluation method 
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Prior Work 

UCLA_DRE (ICCAD’09 ,TCAD’12) 
•  A framework for early exploration of design rules, 

patterning technologies, layout methodologies, and 
library architectures 

•  Standard cell-level evaluation 

Shortcomings 
•  Not every change in cell area results in a 

corresponding change in chip area 
•  Chip area can be affected by buffering and gate  

sizing to meet timing constraints 
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Chip-DRE: Chip level Design Rule Evaluator 

•  Generates virtual standard-cell library 
•  Employs semi-empirical and machine-learning-

based models 

•  Good Chips per Wafer (GCPW) 
–  unified metric for area, performance, variability 

and functional yield metrics 
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FLOW OF CHIP-DRE 
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Chip-DRE Flow 
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Chip-DRE Flow 
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Chip-DRE Flow 
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Cell Delay-to-Area Model  
•  Addresses effect of timing optimization during 

physical synthesis 
•  Predicts total cell-area scaling factor as cell-

delay is scaled 
•  Based on Machine learning: Neural Network 
•  Features:  

–  number of instances on critical path, 
–  average fanout, average interconnect length, 
–  average delay and area of gates on critical path, 
–  utilization and timing constraint, 
–  ratio between area of critical paths to total cell area and 
–  delay scaling factor 
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Cell-area to Chip-area Model 
•  Semi-empirical model to estimate chip-area in terms of cell-

area 
•  Accounts for routing-limited designs 
•  Coefficients fitted from P&R experiments 

–  Use AEGR (Area estimation using Global Routing)  
•  Estimate maximum utilization such that design is routable 
•  Up to 7x speedup 
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x	  :	  total	  cell-‐area	  
y	  :	  chip-‐area	  
x0,	  y0	  :	  fiGng	  coefficients	  
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Well-to-active Spacing Rule Exploration 

•  As Well-to-active spacing rule increases: 
–  Cell area increases 
–  Cell delay decreases due to well proximity effect 

•  Dependence of GCPW and chip-area on the rule 
value is non-monotone! 

•  Verified against PR runs, with max error of 3% 
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FinFET Fin-Pitch Study 
•  Fin pitch effect on chip area of FPU 
•  Fin pitch of 60nm through 100nm, cell area is 

steeply increasing while chip area is slightly 
changing 

•  Error <5% 
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Local Interconnect-to-poly Spacing Study 

•  As LI-to-poly space increases 
–  Cell area increases 
–  Cell delay changes: capacitive coupling decreases 

but diffusion capacitance may increase 
•  Study shows cell-area increase dominates over 

potential chip-area decrease 
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Conclusion 
•  Introduced Chip-DRE framework for fast and 

systematic evaluation of design rules and library 
architectures at chip-scale 
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Future Work 
•  Include Power optimization 
•  Extend to back-end rules and use Chip-DRE to 

develop DR and library projections for 5nm node 
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QUESTIONS ? 
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BACKUP 
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Cell Delay Estimation 
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Yield Estimator 
•  Using DRE 
•  Considers probability of survival from:  

–  Overlay error: Normal distribution 
–  Random Particle Defects: Critical area analysis + 

negative binomial yield model   
–  Contact hole failure: Poisson distribution 
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Numeric Results for WPE Experiment 

GCPW	  (Chip-‐
DRE)	

Error	  
[%]	

Chip-‐Area	  
(SPR)	  	  
[um2]	

Chip-‐Area	  
(Chip-‐DRE)	  

[um2]	

Cell-‐Area	  
(Chip-‐DRE)	

Run-‐3me	  
(SPR)	  [min]	

Well-‐to-‐
ac3ve	  	  	  
spacing	  
[nm]	

667	0.8	30130	30364	28171	118	140	

681	0.8	29460	29709	28171	356	185	

612	-‐3	33913	33008	32527	240	200	

616	-‐2	33554	32787	32554	207	210	
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Variability 

28	  



NanoCAD Lab puneet@ee.ucla.edu	   UCLA 

Variability  
•  Current variability index: 

•  Modeling delta W/L for each source of variability 
from literature (tapering, diffusion and poly 
rounding, CD variability) 
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Manufacturability  
•  Manufacturability  Index  for  evaluating  DRs  is  

probability  of  survival  (POS)  from  three  major  
sources  of failure 
–   contact-defectivity (a.k.a. contact-hole failure); 
–   overlay error (i.e. misalignment between layers) 

coupled with lithographic line-end shortening (a.k.a. 
pull-back); 

–  random particle defects. 
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Manufacturability (cont’d) 
•  Contact hole yield follows poisson yield model: Y=Y0*e^(-lambda) 
      Lambda is average # failed contacts=# contacts * failure rate.  
•  Overlay vector components in x and y directions are described by a 

normal distribution with zero mean & 3σ 
•  We compute POS from overlay causing: failure to connect between 

contact and poly/M1/diffusion, gate-to-contact short defect, and 
always-on  device  caused  by  poly-to-diffusion  overlay  error 

•  For failure  caused  by  random  particles, critical  area  analysis  for  
open  and  short  defects  at M1/poly/contact layers and short 
defects between gates and diffusion-contacts. 

•  Yield=yield_contact*yield_overlay*yield3_randomParticles; 
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