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Performance Monitoring

* Process corner identification
— Adaptive voltage scaling, adaptive body-bias

* Runtime adaptation
— DVFS

 Manufacturing process tuning
— Wafer and test pruning [Chan10]



Monitor Taxonomy

* In-situ monitors:
— In-situ time-to-digital converter (TDC) [Fick10]
— In-situ path RO [Ngo10, Wang08]

e Replica monitors:

— One monitor: representative path [Liul0]

— Many monitors: PSRO [Bhushan06]
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*  How many monitors?

e

D@ * How to design monitors?

e How to use monitors?



Key Observation: Sensitivities Cluster!
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DDRO Contributions

e Systematic methodology to design multiple DDROs based
on clustering

e Systematic methodology to leverage monitors to estimate

chip delay
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Delay Model and Model Verification

* Assume a linear delay model for variations
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Sensitivities and Clustering

* Extract delay sensitivity based on finite
difference method
dG-:la —d

d

nom

e Cluster the critical paths based on sensitivities

nom

Vj:

— Use kmeans++ algorithm
— Choose best k-way clustering solution in 100 random starts
— Each cluster centroid = target sensitivity for a DDRO

* Synthesize DDROs to meet target sensitivities



DDRO Synthesis
* Gate module is the basic building block of DDRO
— Consists of standard cells from qualified library

* Multiple cells are concatenated in a gate module

— Inner cells are less sensitive to input slews and output
load variation

— Delay sensitivity is independent of other modules
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ILP formulation

Module sensitivity is independent of its location

N -2 ¢ )

Module number can only be integers

Formulate the synthesis problem as integer linear
programming (ILP) problem

Subject to: Delay,,, <Z (Sh X - ) < Delay,,,,
Z S, < Stage . .
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Sensitivity Decomposition

* Based on the cluster representing RO

* User linear decomposition to fully utilize all
ROs

N = > -

Sens(RO1)
Sens(path) =0.9 x Sens(RO1) + 0.1 x Sens(RO2)

Sens(RO2)
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Path Delay Estimation

* Given DDRO delay, use the sensitivity decomposition
* Apply margin for estimation confidence

Predicted path delay Measured from RO Margin
\ N gin/
dl.p“th = d,fojih x(1+2b, =~ nom" +u,)
dk
Other variation components \ Sensitivity residue

where : u, =1""+V G

res

* One estimation per path



Cluster Delay Estimation

* For run-time delay estimation, may be
impractical to make one prediction per path

* Reuse the clustering
— Assume a pseudo-path for each cluster
d{" = max{d"", pathi e cluster X}

— Use statistical method to compute the nominal
delay and delay sensitivity of the pseudo-path

— Estimate the pseudo-path delay
* One estimation per cluster
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Sensitivity Extraction

* All variability data from a commercial 45nm
statistical SPICE model
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Experiment Setup

e Use Monte-Carlo method to simulate critical
path delays and DDRO delays

* Apply delay estimation methods with certain
estimation confidence
— 99% in all experiments

 Compare the amount of delay over-prediction

— Delay from DDRO estimation vs. Delay from
critical paths



Mean delay overestimation (%)

Linear Model Results
Global variation only
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The two estimation methods
perform similarly
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Mean delay coverestimation (%)

Mean delay overestimation (%)

Linear Model Results
Global and local variations
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* With local variation, the
benefit of having more ROs
saturates

* Local variation can only be
captured by in-situ monitors
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Conclusion and Future Work

A systematic method to design multiple DDROs
based on clustering

An efficient method to predict chip delay

By using multiple DDROs, delay overestimation is
reduced by up to 25% (from 4% to 3%)

— Still limited by local variations
Test chip tapeout using 45nm technology
— With an ARM CORTEX M3 Processor
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Thank you!



Test Chip

e Test chip tapeout using 45nm technology
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Gate-module

* The delay sensitivities for different input slew
and output load s

combinations. 2%
* Use5stages
as trade-off
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mean overestimation (%)

SPICE Results

Global and local variations
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Process Tuning

* Circuit performance monitoring is potentially
helpful as test structure for manufacturing
process tuning

" Delay and leakage — How to exploit the performance
power model monitors to make short-loop

monitoring?
‘ Compressed design
dependent parameters

Measured |-V, C-V ‘
values after M-1

Wafer
Performance

estimation

pruning

Scribe-line test structures T. Chan, ICCAD 2010
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Existing Monitors

________|Generic______|Design-dependent

Many N/A Representative path [XielO]

monitors In-situ monitors [Fick10]
Critical-path replica [Black0O, Shaik11]
In-situ path RO [Ngo10, Wang08]

Multiple PSRO [Bhushan06] This work

monitors RO [Tetelbaum09] TRC [Drake08]
Process monitors [Burns08, Philling09]

One monitor PLL [Kang10] Representative Path [Liu10]
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