DDRO: A Novel Performance Monitoring Methodology Based on Design-Dependent Ring Oscillators

Tuck-Boon Chan⁺, Puneet Gupta[§], Andrew B. Kahng^{+‡} and *Liangzhen Lai*[§]

UC San Diego ECE⁺ and CSE[‡] Departments, La Jolla, CA 92093 UC Los Angeles EE[§] Department, Los Angeles, CA 90095

Outline

- Performance Monitoring: An Introduction
- DDRO Implementation
- Delay Estimation from Measured DDRO Delays
- Experiment Results
- Conclusions

Performance Monitoring

- Process corner identification
 - Adaptive voltage scaling, adaptive body-bias
- Runtime adaptation
 - DVFS
- Manufacturing process tuning

- Wafer and test pruning [Chan10]

Monitor Taxonomy

- In-situ monitors:
 - In-situ time-to-digital converter (TDC) [Fick10]
 - In-situ path RO [Ngo10, Wang08]
- Replica monitors:
 - One monitor: representative path [Liu10]
 - Many monitors: PSRO [Bhushan06]

- How many monitors?
- How to design monitors?
- How to use monitors?

Key Observation: Sensitivities Cluster!

- Each dot represents
 Δdelay of a critical path under variations
- The sensitivities form natural clusters
 - Design dependent
 - Multiple monitors
 - One monitor per cluster

DDRO Contributions

- Systematic methodology to design *multiple* DDROs based on clustering
- Systematic methodology to leverage monitors to estimate chip delay

Outline

- Performance Monitoring: An Introduction
- DDRO Implementation
 - Delay model
 - Sensitivity Clustering
 - DDRO Synthesis
- Delay Estimation from Measured DDRO Delays
- Experiment Results
- Conclusions

Delay Model and Model Verification

• Assume a linear delay model for variations

Sensitivities and Clustering

 Extract delay sensitivity based on finite difference method

$$V_{j} = \frac{d_{G_{j}=1\sigma} - d_{nom}}{d_{nom}}$$

- Cluster the critical paths based on sensitivities
 - Use kmeans++ algorithm
 - Choose best k-way clustering solution in 100 random starts
 - Each cluster centroid = target sensitivity for a DDRO
- Synthesize DDROs to meet target sensitivities

DDRO Synthesis

- Gate module is the basic building block of DDRO
 Consists of standard cells from qualified library
- Multiple cells are concatenated in a gate module
 - Inner cells are less sensitive to input slews and output load variation
 - Delay sensitivity is independent of other modules

ILP formulation

• Module sensitivity is independent of its location

$$\begin{array}{c} \text{RO} \\ \text{sensitivity} \end{array} = \sum (S_h \times \left[\begin{array}{c} \text{Module } h \\ \text{sensitivity} \end{array} \right] \end{array}$$

- Module number can only be integers
- Formulate the synthesis problem as integer linear programming (ILP) problem

Outline

- Performance Monitoring: An Introduction
- DDRO Implementation
- Delay Estimation from Measured DDRO Delays
 - Sensitivity Decomposition
 - Path Delay Estimation
 - Cluster Delay Estimation
- Experiment Results
- Conclusions

Sensitivity Decomposition

- Based on the cluster representing RO
- User linear decomposition to fully utilize all ROs

Path
sensitivity =
$$\sum(b_k \times RO + Sensitivity + Sensitivity residue)$$

Sens(RO1)
Sens(path) = 0.9 x Sens(RO1) + 0.1 x Sens(RO2)
Sens(RO2)

Path Delay Estimation

- Given DDRO delay, use the sensitivity decomposition
- Apply margin for estimation confidence

• One estimation per path

Cluster Delay Estimation

- For run-time delay estimation, may be impractical to make one prediction per path
- Reuse the clustering

- Assume a pseudo-path for each cluster

 $d_X^{cluster} = \max\{d_i^{path}, path \ i \in cluster \ X\}$

- Use statistical method to compute the nominal delay and delay sensitivity of the pseudo-path
- Estimate the pseudo-path delay
- One estimation per cluster

Outline

- Introduction
- Implementation
- Delay Estimation
- Experiment Results
- Conclusion

Sensitivity Extraction

All variability data from a commercial 45nm statistical SPICE model

7stages Inverter chain RO delay

Experiment Setup

- Use Monte-Carlo method to simulate critical path delays and DDRO delays
- Apply delay estimation methods with certain estimation confidence
 - 99% in all experiments
- Compare the amount of delay over-prediction

 Delay from DDRO estimation vs. Delay from
 critical paths

Linear Model Results Global variation only

Linear Model Results Global and local variations

Conclusion and Future Work

- A systematic method to design multiple DDROs based on clustering
- An efficient method to predict chip delay
- By using multiple DDROs, delay overestimation is reduced by up to 25% (from 4% to 3%)

Still limited by local variations

- Test chip tapeout using 45nm technology
 - With an ARM CORTEX M3 Processor

Acknowledgments

 Thanks to Professor Dennis Sylvester, Matt Fojtik, David Fick, and Daeyeon Kim from University of Michigan

Thank you!

Test Chip

• Test chip tapeout using 45nm technology

With an ARM CORTEX M3 Processor

Gate-module

 The delay sensitivities for different input slew and output load 3.00%
 0.08%
 0.039

combinations.

Use 5 stages

 as trade-off
 between
 module area
 and stability

SPICE Results

Global and local variations

Process Tuning

 Circuit performance monitoring is potentially helpful as test structure for manufacturing process tuning

Existing Monitors

	Generic	Design-dependent
Many monitors	N/A	Representative path [Xie10] In-situ monitors [Fick10] Critical-path replica [Black00, Shaik11] In-situ path RO [Ngo10, Wang08]
Multiple monitors	PSRO [Bhushan06] RO [Tetelbaum09]	This work TRC [Drake08] Process monitors [Burns08, Philling09]
One monitor	PLL [Kang10]	Representative Path [Liu10]