A Framework for Double Patterning-Enabled Design

<u>Rani S. Ghaida</u>^{*}, Kanak B. Agarwal[†], Sani R. Nassif[†], Xin Yuan[‡], Lars W. Liebmann[§], Puneet Gupta^{*}

rani@ee.ucla.edu

EE Dept, NanoCAD Lab *

			4
		-	

Austin Research Lab[†] San Jose[‡] Semiconductor R&D Center[§]

Double-Patterning Lithography

- DP in LELE process is an attractive technique to scale tech to 20nm an below
- Delays in EUV \rightarrow DP is inevitable
- DP's biggest challenge is coloring conflicts
 - Stitching cannot resolve all conflicts
 - Odd cycle in poststitching conflict graph
 → native conflict

Prior Art in Coloring

- Rule based stitching (Chiou et al. & Tritchkov et al. SPIE'08)
 - Stitch at specific shape locations
 - Many stitch locations cannot be found
- Segmentation-based coloring and stitch minimization
 - Segment polygons into rectangles (e.g. Kahng TCAD'10, Yuan ISPD'09)
 - Unnecessarily grows the problem size
 - Difficult to handle different tip-to-tip, tip-to-side, and side-to-side spacing rules

Prior Art in Conflict Removal

- ILP-based layout perturbation (Hsu et al. & Yuan et al. ICCAD'09)
 - Slow solving time
 - − DP constraints in ILP \rightarrow even slower
- Iterative layout compaction (Chen et al. ICCAD'09)
 - − DP-compliance check at every iteration \rightarrow slow
 - DP constraints only at odd cycles → Resolution of one conflict may introduce another and may not converge
- Use segmentation
 - Earlier drawbacks
 - Also, needs to maintain connectivity at joints

Overview of the Framework

- Fast linear time coloring
- LP-based conflict removal
 - Simultaneously fixes all conflicts without creating new conflicts

Mask Assignment

- Design rule-dependent projection
 - Project from each lineside and lineend based on rule value
 - Violating parts \rightarrow min same-color space
 - Non-violating parts \rightarrow can be any color
 - Grow violating parts to meet minimum feature size on mask
 - Stitch locations are non-violating parts b/w 2 or more violating parts of size > min overlap length

Mask Assignment and Benefits

- Assign violating parts to the first and second mask
 - Constraint: min achievable # of conflicts with DP DRs obeyed
 - Objective: minimize # of stitches
- Guarantee to find a coloring solution if one exists
- No segmentation
 - Handles tip-to-tip, tip-to-side, side-to-side, and min size rules naturally
 - Dealing with polygons rather than rectangles \rightarrow smaller problem size

Mask Assignment – Preferred Coloring

- Coloring of native conflicts affects efficiency of conflict removal
- Give preference for opposite coloring for certain violations over others → label violations critical vs. less-critical
 - E.g., horizontal spacing violation more critical than vertical or diagonal in case of vertical poly orientation

- 1. Conflict graph with critical viol, less-critical viol, and stitches
- 2. Identify connected components (colored independently)
- 3. Identify sub-components (sub-graph with no stitches)
- 4. Alternating coloring with critical nodes colored before
 - less-critical nodes and until a stitch must be used
- 5. Flip sub-component coloring to reduce used stitches

Coloring Results

Cuts = used stitches

Min = min overlap length in [nm]

		ILP		CCD		Our approach	
Design	Min	Cuts	Secs	Cuts	Secs	Cuts	Secs
ART-A	8	24290	564.6	25521	378.6	25480	6.1
45(70%)							
ART-B	10	72828	2887.4	76550	2316.8	76634	20.5
45(70%)							
ART-C	8	121916	8291.2	127935	7895.8	126715	35.5
45(70%)							
ART-A	13	25432	612	26629	391	27691	6.3
45(90%)							
ART-B	10	76292	2892.2	79836	2355.2	82089	20.5
45(90%)							
ART-C	8	126238	8129	132303	8205	135558	37.5
45(90%)							

- Test cases (Kahng *et al.* TCAD'10)
 - 100-500K cells, 45nm Poly, same rules
- Coloring 230X faster than ILP-based coloring
- # of stitches larger by a modest 4% to 8.8%

Layout Legalization for Conflict Removal

DP Layers and Constraint Definition

- DP layer \rightarrow two stand-alone layers
- 2D prob. \rightarrow successive 1D (in x and y directions)
- Construct constraint graph
 - Nodes \rightarrow layout edges, Arcs \rightarrow constraints (rules)
- Same mask DRs \rightarrow arcs b/w features of same mask (e.g., S_{min}^*)
- DRs b/w the two mask layouts (e.g., min overlap length) → arcs b/w nodes of the two stand-alone layers
- DRs b/w whole DP layer & other layers \rightarrow arcs with union layer

LP Formulation to Remove Conflicts

- LP formulation allows fast polynomial time solution
- Advantages of fixing coloring before legalization
 - Solving conflict on one layer cannot create another elsewhere
 - No need for iterative loop of coloring + legalization
 - Handling of spacing rules is clean

Rani S. Ghaida

Layout Simplification for More Efficient Conflict Removal

No conflicts

Layout Simplification for More Efficient Conflict Removal

Before legalization

After legalization

- Many conflicts on M1 are caused by segments for redundant contacts/vias or pin-access
 - These improve yield/routability but are not absolutely required
- → possible sacrifice of redundancy and extra pin segments for more efficient conflict removal

Sacrificing Unnecessary Layout Features

- Identify redundant CA and extra pin segments and remove them before coloring
- Add recommended constraints to add the features back after legalization

Handling of Recommended Constraints

Poly

New M1

//// Removed M1

 X_1 New M1 edge x location

 X_2 Contact edge x location

$$Min \quad \sum_{i} W_{i}|X_{i} - X_{i}^{init}| + \sum_{ij} W_{ij}r_{ij}$$
$$ST: \quad X_{j} - X_{i} \ge d_{ij}, \forall A_{ij}; r_{ij} \ge 0$$

 $X_1 - X_2 + r_{12} = contact width + M1 overlap past contact$

$$r_{12} = 0$$
 A B $r_{12} > 0$ A B

- Introduce r_{ij} variable to relax the constraint
- Minimize *r_{ii}* in objective function
- r_{ij} minimization given less priority than non-recommended rules by assigning smaller weight W_{ij}

Experimental Setup – Conflict Removal

Original 5 conflicts

Same area, 2 conflicts

No conflicts, 6.2% area increase

- Conflict removal results
 - Tested on commercial 22nm standard cells and macros
 - On dense M1, assumed to be double patterned
 - Min spacing = min width = 40nm
 - SS, TS, TT spacing rules = 80nm (i.e. 2X pitch relax.)
 - Results with fixed area and non-fixed area

Conflict Removal Results

	Origi	nal	No Area Increase		W/ Area Increase			
Layout	N. Area	Conf.	Conf.	Sac. Red. CA	Conf.	Sac Red. CA	Area Increase	
LCB + latch 1	1	1	0	0	-	-	-	
latch1	1.6	3		0	0	0	9.1%	
oai	1.6	2		1	-	-	-	
scan latch	2.3	5	3	0	0	0	6.2%	
xor	2.4	2	0	0	-	-	-	
latch2	4.3	19	8	0	0	0	3.3%	
nand4	4.7	4	0	0	-	-	-	
latch3	5.3	4	(3)	0	0	0	5.4%	
nand3	6.7	7	0	0	-	-	-	
LCB control. 1	13.7	13	$\sqrt{7}$	4	0	4	8.3%	
LCB control. 2	50.3	53	31	1	0	2	9.1%	

• Conflict removal framework achieve DP-compatible cells

- No area overhead for simple cells
- Modest area overhead (at most 9%) for complex cells and macros
- Few sacrificed redundant contacts (CA)
- Less than 1 min in real time for largest macro (460 trans.)

Summary

- A novel framework to enable DP in the design
 - Conflict-free cells & designs w/ modest area overhead
 - Enables designing with conventional DRs
 - Shields designer from DP complexity
- Coloring method
 - Fast O(n)
 - Using all candidate stitches → guarantees conflict-free solution when it exists
- Automated DP conflict removal and layout legalization
 - Fast polynomial time solution using LP
 - Simultaneously across all layout layers
 - Minimizing layout perturbation
- Ongoing work: better stitch minimization heuristics

Thank you for your attention!

Questions?