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Technology Scaling Problems 

Figure courtesy Synopsys Inc.
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Variability: Consequence of Shrinking Dimensions

4

2010               2015              2020               2025
Year

%
 V

a
ri

a
b

il
it

y

700

600

500

400

300

200

100

0

Performance

Total Power

Static (sleep) Power

Projections of Variability (ITRS)

Error is just one manifestation of variability!
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Sources of Variability

Semiconductor Manufacturing

WYS is not WYG

Vendor Differences

Multi-sourcing of parts

Ambient Conditions

Extreme voltage/temperature  

environments especially for sensors

Aging

Temporal stress, e.g., due to NBTI
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The Hardware-Software Boundary

Idealization: hardware has rigid specifications

Hardware Abstraction Layer (HAL)

Operating System

Application Application
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The Hardware-Software Boundary

Practice: over-design & guard-banding for illusion of rigidity 

Hardware Abstraction Layer (HAL)

Operating System

Application Application
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The Cost of “Hiding” Variability
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A New Hardware-Software Interface
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Opportunistic Software on Underdesigned

Hardware

• Hardware signature measurement

• One time for process/vendor variation

• Periodic for ambient/aging.

• Advantages

• Hardware can avoid overdesign as well as self-healing  lowered cost

• Software leverages hardware maximally
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Variability in Contemporary Embedded 

Processors

Cortex M3 Active Power (Room Temperature)
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Atmel SAM3U4E Cortex M3

Active Mode, 4MHz Internal Oscillator

Room Temperature
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Variability in Contemporary Embedded 

Processors

Cortex M3 Sleep Power (Room Temperature)
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Atmel SAM3U4E Cortex M3

Sleep Mode, 32KHz Slow 

Oscillator

Room Temperature



Variability Expedition variability.org

Sleep power vs. Temperature
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Atmel SAM3U4E Cortex M3

Sleep Mode, 32KHz Slow 

Oscillator
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Analytical Modeling of Sleep Power

• Sources of static (sleep) power:

1. Sub-threshold Leakage

2. Gate Leakage

3. Reverse Biased Junction Leakage 

4. Gate Induced Drain Leakage

• Sleep power model (derived from BSIM4 compact device model)

• A and B are technology-dependent constants

• Igl is the temperature-independent gate leakage current

• T is the core temperature.

16

Psleep  Vdd (AT
2eB /T  Igl )
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Measured vs. Modeled Sleep Current
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These calibrated models are the hardware variability signatures passed to 

the software stack
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A Software Stack for Variability-aware Duty-

cycling
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Energy-Aware Operating through Duty-Cycling

• Embedded sensing systems are typically duty cycled

• Systems “sleep” for most of the time

• “Wake up” periodically to acquire data or respond to event

• Often, duty cycle rate is very small (e.g. < 1%) , so that the energy consumed 

in the sleep state accounts most of the energy consumption

20

Sleep

Active
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Variability-Aware Duty Cycling

• The maximum duty cycle rate is a function of 

• Available Energy

• Lifetime required for the application

• Active mode power

• Sleep Mode Power

• Sleep power (and active power, to a lesser extent) changes according to 

instance and temperature-dependent variation

• Implemented variation-aware duty cycling scheme in TinyOS

21

MaxDutyCycle 

EnergyBudget

LifeTime
 Psleep

Pactive  Psleep
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Implications of Variation for Duty Cycling
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Active Mode: 48 MHz

Sampling Task: 10 s

Battery: 2xAA (5.4 A-h)

Lifetime: 20000 hours

P1 can acquire 

51% more

data than P3

Temperature + 

Instance 

performance 

improvement = 

80%!
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Opportunism Advantage vs. Lifetime
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Active Mode: 48 MHz

Sampling Task: 10 s

Battery: 5.4 A-h

Room Temperature

P2 can acquire 

70% more

data than P3
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Projecting Opportunism Benefit into Future
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Conclusions

• Growing variability  unmanageably high cost of preserving rigid hardware-

software interface  Need for a software stack that opportunistically adapts to 

“as measured” hardware characteristics 

• Self-monitoring hardware as opposed to self-healing

• Variability-Aware opportunistic sensing systems

• No adaptation  conservative specifications  untapped energy resources

• Proof-of-concept variability-aware duty cycle scheduler

• 1.8x improvement in quality of sensing for current generation hardware

• Benefits will increase with scaling of technology

• Ongoing work (plenty!)

• Alternative methods for exposing variation to software layers

• Cheap variation monitoring strategies

• Implications for hardware design

• See the new NSF Variability Expedition (http://variability.org) with the goal of a 

fluid hardware-software interface
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http://variability.org/
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From Crash-and-Recover to Sense-and-Adapt
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Variability manifestations

-faulty cache bits

-delay variation

-power variation

sensors & models

Variability signatures:
-cache bit map

-cpu speed-power map

-memory access time

-ALU error rates
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Measuring Hardware Signatures

• Production test (static signatures)

• Explore low-cost methods of rich, fine-grained binning

• Spatial by leveraging correlations

• Non-conventional axes such as error behaviors

• Runtime sensing (dynamic signatures)

• Monitors: simple low-overhead test structures (e.g., ROs)

• Error detection: E.g., Razor. Can allow direct tradeoff between error rate and power. May need offline 

calibration

• Online Self-test: may be useful to detect functional problems

• Software inference: insert test operations within software not requiring any hardware support.

• Optimizing measurement overheads

• Use (compiler-inserted) application directives to change monitoring accuracy

• Leverage alternative application configurations in deriving the optimal signature measurement points

• Use smart, adaptive sampling methods

• Example : H.264 optimal frequency 

• Signature sampling
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