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NBTI Background

e |Vth| increase for negatively biased PMOS
e |Vth| increase causes delay increase
e Delay increase can cause timing failures

e Degradation depends on stress time and Vdd

Avth o f (Vdd) .ttime_exp onent

stress

e NBTI| degradation is front-loaded
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NBTI Mitigation Techniques
e Guardbanding is traditional way to deal with NBTI

e Increase voltage / Reduce Frequency / Increase Area

* Many works propose techniques to reduce the
cost of provisioning for NBTI

e Dynamic Voltage Scaling

e Always use lowest possible supply voltage
e Activity Management

e Attempt to put PMOS in idle state
e Power Gating

e Relax all nodes by turning power off



Motivation

e Benefits quoted by mitigation techniques seem to
be at odds with front-loaded aging behavior

* 50% of lifetime degradation occurs within 1.6 months
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evisit NBTI modeling, especially applied to
architecture-level NBTI mitigation techniques



Outline

e Background and Motivation

e NBTI Modeling

e Application of NBTI model to architecture-level
mitigation techniques

e Proposed NBTI model
e Methodology

e Revisiting architecture-level NBTI mitigation



NBTI Reaction-Diffusion Model

e Holes interact with H-passivated Si atoms

e Holes break Si—H bonds at Si/SiO, interface,
generating traps and freeing H atoms

* H atoms anneal a trap or diffuse through SiO,
e |Vth| increase proportional to number of traps
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e Diffusion can also drive H atoms back toward
interface when stress is relaxed > Recovery



NBTI Reaction-Diffusion Model

Reaction at surface
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Device-level Analytical Model

e Architecture-level techniques have been based on
device-level analytical models
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e Model fine for device-level analysis, but:
e Assumes constant supply voltage
e Assumes fixed, periodic signal with 100% activity
e Does not model interactions over paths or circuits

Device-level analytical models not suitable to model
the impact of dynamic, architecture-level techniques



Flexible, Numerical Aging Model for NBTI

e Solve Reaction-Diffusion equations numerically

e Same underlying NBTlI model, but now we can
account for the impact of architecture techniques

e Supply voltage can be substituted at any time step
e Arbitrary activity patterns can be simulated
e Waveform is adapted to model path and circuit effects
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Outline

e Background and Motivation

e NBTI Modeling

e Application of NBTI model to architecture-level
mitigation techniques

e Proposed NBTI model
 Methodology

e Revisiting architecture-level NBTI mitigation



Methodology

e SP&R OpenSPARC T1, characterize critical paths

e Numerical simulation framework calculates Vth
degradation

e SPICE models degradation vs delay relationship
for critical paths

e SMTSIM+SPEC characterize processor throughput
and activity



Results — Dynamic Voltage Scaling
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Supply voltage approaches guardband quickly in early
lifetime. Power savings limited afterward.



Results — Dynamic Voltage Scaling
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Significant power savings early on, limited later.
Benefits degrade for realistic DVS.



Limitations of Device-level Models

e Analytical equation does not model physical
degradation phenomenon

e Changing voltage in analytical equation is like
instantaneously changing internal device state
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Results — Activity Management
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Limitations of Device-level Models

e AC signals used previously do not resemble typical
digital signals in CMOS circuits

e They assume 100% activity
e They assume all PMOS behave the same time
e When one is relaxed, all are relaxed
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Limitations of Device-level Models

e CMOS stands for Complementary MOS

e Relaxation state at node implies stress state at
next node

Relaxed Stressed!
e ]
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Device-level model ignores circuit-specific
implications like path and circuit effects.



Limitations of Device-level Models

e Alternating values in idle state models averaging
effect of degradation across logic path
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Results — Power Gating
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Results — Activity Management + Power Gating
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Summary and Conclusions

e Front-loaded nature of NBTI impacts the efficiency
of architecture-level NBTI mitigation techniques

e Reported benefits were inconsistent with device-level
NBTI behavior

e Applied flexible numerical simulation approach to
model impact of architecture-level techniques

e Results from evaluations using the proposed
model consistent with device-level behavior

e Guardbanding almost as good as ALL previously
proposed techniques

e Numerical aging model available for download at

http://nanocad.ee.ucla.edu/Main/DownloadForm
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NBTI Reaction-Diffusion Model

Reaction at surface
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Numerical Model Details

e Trap generate rate slow compared to dissociation
and annealing rates
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Numerical Model Details
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Numerical Model Details — Validation
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NBTI Background: Stress and Recovery

e NBTI affects PMQOS
(PBTI affects NMOS)

e TWo important
phases of NBTI

e Stress: |Vth]|
increases when a
PMOS |S On P;ﬂ:g:nt
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Activity Management

e Manage activity factor to control stress / relaxation
ratio

e Bias signal probabilities to relax PMOS

e Throttle processor activity to enable power gating

Issues:

e CMOS (Complementary MOS) stresses roughly half
of nodes even in idle mode

* Front-loaded degradation curves converge quickly
after short active time



Background

e Degradation rate is fast initially, slows down after a PMOS
is stressed for extended period of time

e Similarly, recovery rate is fast initially and slows down
after a short period - there is unrecoverable A|Vth|

e Static NBTI vs. dynamic NBTI
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NBTI Mitigation Techniques

e Dynamic Voltage Scaling
e NBTI degradation happens very fast at the beginning

e Rapid Supply voltage adjustments happen only at early
lifetime

e Power saving is not significant after early lifetime
—efficiency of DVS reduces
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NBTI Mitigation Techniques

e Dynamic Instruction Scaling (DIS)
e Changes instructions to control/limit circuit activity
e Assume circuit only degrades when it is switching or active

e But CMOS always has inverting signal = a PMOS is under
recovery 2PMOS at the next node is under stress

e Examine efficiency of DIS
e A|Vth| is not sensitive to activity factor
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NBTI Mitigation Techniques

e Power-gating circuit
to reduce degradation

e PMOS recovers during
power gating
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Results — DVS
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Voltage switches frequent first few days/weeks.
Afterward, time between switches ~years.



Lifetime-Aware Adaptation

e Monitor MTTF and adapt processor to meet
lifetime target

Issues:
e Average failures over lifetime
e Linear degradation curve rather than logarithmic



Motivation for NBTI Mitigation

e Guardbanding introduces a power / performance
cost over the entire lifetime of the processor

If aging doesn’t fully accumulate
until end of lifetime,
why pay full price for entire lifetime?



Revisiting NBTI Analysis

e Device-level models used to motivate and analyze
architecture-level mitigation techniques

e Results and conclusions should be revisited with a
capable model

We present a flexible numerical model for NBTI
degradation that can model the impact of
architecture-level NBTI mitigation techniques.



Flexible Numerical Model

e Dynamic voltage scaling

e Numerical solution allows direct voltage substitution
e Signal modeling

e Simulator can parse digital signal waveforms

* |[nverting nature of CMQOS
e Use of alternating values in idle state
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Conclusions

e Recent works propose architecture-level NBTI
mitigation

e Architecture-level techniques based on

Inad
e We

equate device-level models
oresent a flexible numerical simulator that can

MOC

el the impact of architecture-level techniques

e Re-evaluation of previous techniques shows that
benefits may be less than suggested

e Guardbanding may still be the best approach

e Numerical aging model available for download

and

Downloa

use in aging-related research

d the Simulator — http://nanocad.ee.ucla.edu/Main/DownloadForm
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