

Design Dependent Process Monitoring for Back-end Manufacturing Cost Reduction

Authors:

¹T.-B. Chan, ³A. Pant, ²L. Cheng & ¹P. Gupta ¹University of California Los Angeles, ²SanDisk,³Mentor Graphics tuckie@ucla.edu

> Acknowledgements : SRC, IMPACT UC Discovery and NSF

The Challenge

Estimate circuit performance early during manufacturing
Previous methods:

design-independent

- Simple RO measurements
- Scribe-line device measurements _
 - E.g., loff, Cg, ldsat, leff, etc
- Proposed method :
- Use simple scribe-line measurements coupled with design-dependent parameters
 - No area overhead, test structures are always available on wafers for process control
 - Measurement after M-1
 - Capture design specific variation

Design Dependent Process Monitoring

Delay Model

- Characterize nominal cell delay and its sensitivity to I_{eff}
- Estimate delay based on measurements from scribe-line test structures
 Measured from test structures

Cell delay = Cell delay nom +
$$\sum_{t} \left(\text{Sensitivity}^{t} \times \frac{\Delta I_{eff}^{t}}{I_{eff}^{t} \text{ nominal}} \right)$$

Pre-characterized

Path delay =
$$\left[\sum_{i=1}^{i} \text{Cell delay} - \text{Interconnect delay}\right]$$

+ Interconnect delay

Design Dependent vs. Independent (timing)

 Δ Cell delay =

$$\sum_{t} k^{t} \times \frac{\Delta I_{eff}^{t}}{I_{eff \text{ nominal}}^{t}}$$

 Δ Cell delay =

Leakage Power Model

- Model leakage power as a linear function of I_{off}
- Chip leakage power = \sum cell leakage

Modeling Within Die variation

Timing (delay)

- Model I_{eff} of each device instance as normal random variable

Leakage power

- Model I_{off} as an exponential function of variation sources
- Leakage power α exp (within–die variations)

Wafer Pruning Benefit

Normalized profit : Wafer Pruning Benefit Max possible number of good chips

Reduce Measurement Noise

- Connect multiples devices in parallel for measurement
- Increase number of measurements
- 2-3% improvement with 5 repeated measurements and 10 devices under test

# Measurements	# Devices on Test Structure	Wafer Pruning Threshold		
		25%	40%	50%
1	1	0.94	0.93	0.95
5	10	0.94	0.95	0.98
100	100	0.94	0.95	0.98

normalized to maximum achievable benefit from ideal wafer pruning

Conclusions and Ongoing Work

 Design dependent process monitoring improves early wafer pruning result by 2% to 4% of maximum achievable revenue

- Ongoing work
 - Die pruning to reduce testing cost
 - Lot pruning : discard a lot of wafers if good chips are below threshold

Thank you

Back up slides

NanoCAD Lab T.-B. Chan

Within Die Variation

15

Path delays = with variation

 Use only a set of largest principle components of W => reduces the size of W

