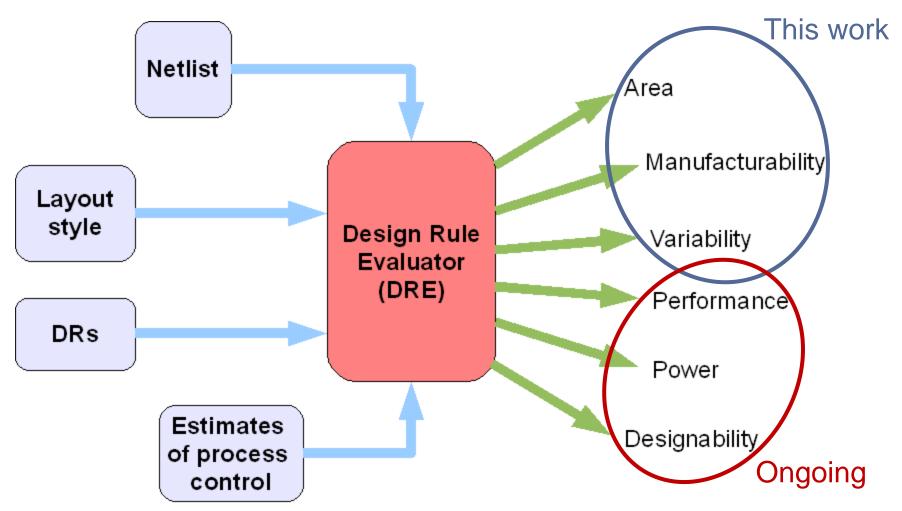


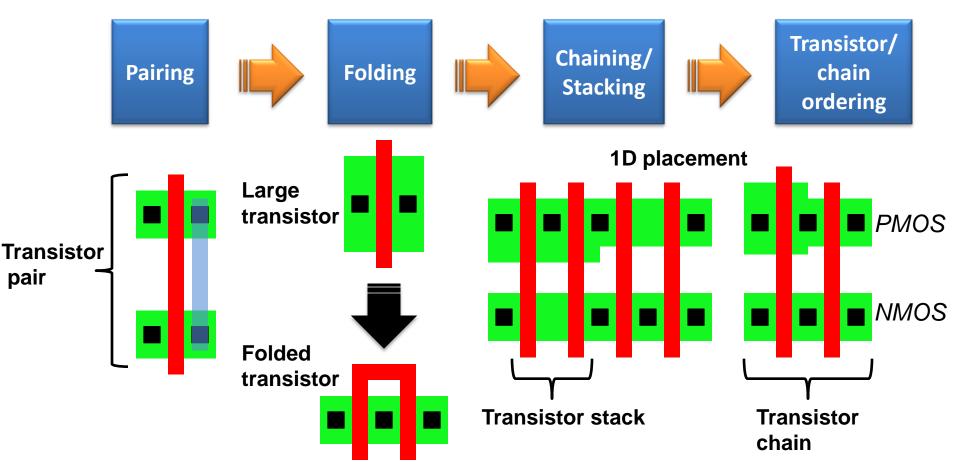
A Framework for Systematic Evaluation and Exploration of Design Rules

Rani S. Ghaida* and Prof. Puneet Gupta EE Dept., University of California, Los Angeles (<u>rani@ee.ucla.edu</u>), (<u>puneet@ee.ucla.edu</u>)

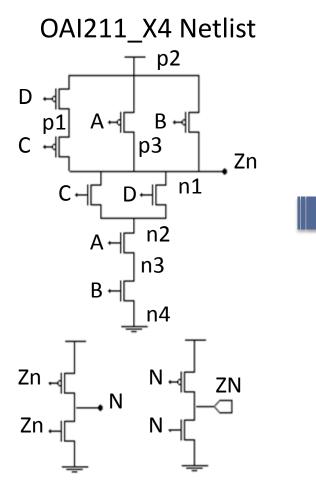

Work partly supported by IMPACT, SRC, and NSF.

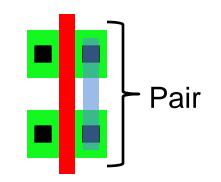
NanoCAD Lab

Motivation


- Industry is faced with many technology options for scaling to every next node
- DRs being the biggest design-relevant quality metric for a technology
 - Evaluating DRs is absolutely necessary to decide on technology choices
- Automated and systematic cell-level DR evaluator
 - focus on *early* evaluation of layout-methodologies and DRs before exact process and design technologies are known
 - avoid explicit simulation or excessive reliance on accurate models

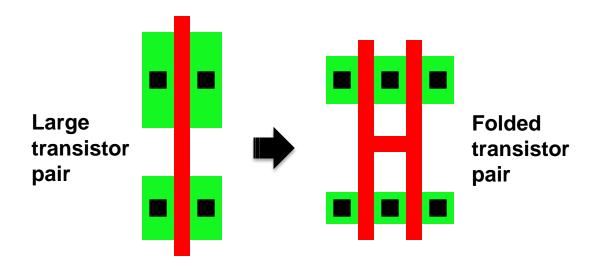
Overview of DR Evaluator


• Fast layout estimation — Fast topology generation + congestion estimation

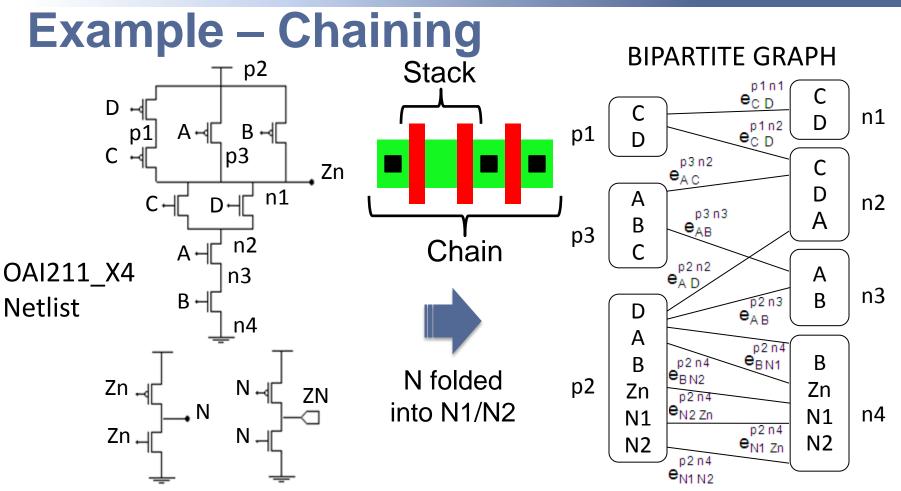

Assumptions and Flow

- CMOS circuits with dual transistors, multiple outputs, any transistor size, 1D transistor placement, i.e. on same row
- Intra-cell routing in poly and M1 layers only (M2 ongoing)

Example – Pairing

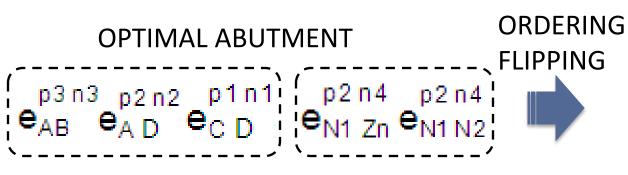


Pairing score table


	TN1	TN2	TN3	TN4	TN5	TN6
TP1	5.9	1.4	0	0	0	0
TP2	0	5	0	0	0	0
TP3	1	1	4.9	0	0	0
TP4	1	1	0	5.6	0	0
TP5	0	0	0	0	6.6	1.1
TP6	0	0	0	0	0.7	6.2

• Matching problem solved optimally with Hungarian algorithm

Example – Folding



- Given fixed cell height (as a rule), exhaustive search to find optimal p/n transistor folding sizes.
- Transistor pairs with a larger height are then folded into multiple pairs

- Edges → possible diffusion sharing between pairs
- If large # of folds, cluster into groups and treat each as single pair
- Chaining: find maximum set of compatible edges

Example – Chaining and Ordering

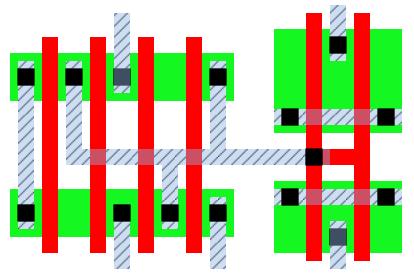
- Chaining/Stacking: C. Hwang et al., TCAD 1990
 - Edges are sorted according to upper bound on the number of abutment after selection
 - Construct solutions in depth-first search with tree pruning
 - Only need to examine first several solutions to find optimal in most cases

Chain ordering:

Min cut placement of chains with exhaustive search for small # of chains

LAYOUT

2 chains/2 stacks


Zn N1 N2

ΒA

D

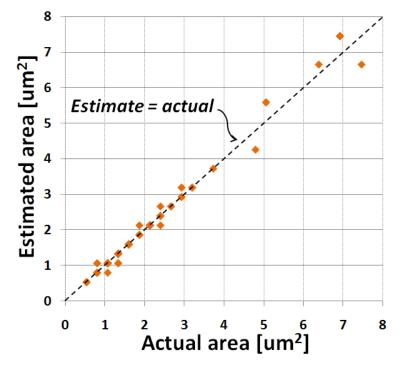
- For large # of chains, partition with FM algorithm and run exhaustive search to order partitions and chains within partitions
- Chains are possibly flipped to minimize WL

Routing and Congestion Estimation

- M1 wiring for S/D-to-S/D and gate connections that cannot be on poly using single-trunk Steiner tree

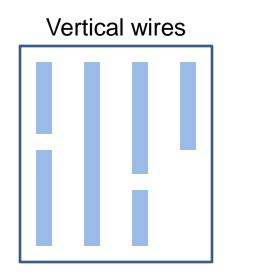
 horizontal trunk in center of cell
- Estimate congestion of vertical/horizontal tracks based on wire length and blockage by wires in orthogonal direction
 - C = Occupied Track-Length / Available TL
 - = (WL + Blocked TL) / Available TL

Blocked TL = Blockage_{Actual} + Blockage_{Orthog}


M1 Area Estimation

- If $C > C_{th} \rightarrow$ increase cell-area to accommodate M1 wiring
- C_{th} captures routing efficiency, I/O pin accessing, and congestion:

$$C_{th} = \alpha + \left| \frac{U_x - U_y}{U_x + U_y} \right| \times \beta - \gamma$$

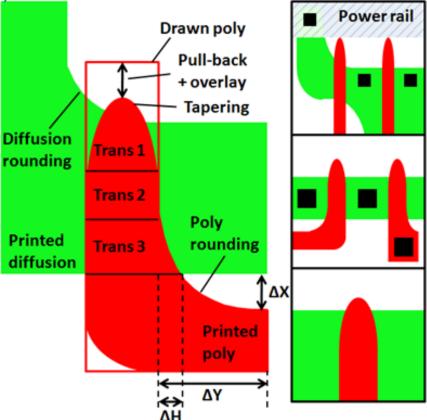

- α and β determined empirically from actual cells from previous generation or trial routes
- γ is for I/O pin-access requirement and is specified by user
- U is utilization w/o considering blockage from orthogonal wiring
- When $U_x \approx 0$, $\left| \frac{U_x U_y}{U_x + U_y} \right| \rightarrow 1 \Rightarrow C_{th}$ larger • When $U_x \approx U_{y'}$, $\left| \frac{U_x - U_y}{U_x + U_y} \right| \rightarrow 0 \Rightarrow C_{th}$ smaller

Validation of Area Estimation and Runtime

- Layout of Nangate cell-library (104 cells) were estimated
 - Area estimated with 2.4% error on average
 - Runtime of evaluation procedure is 20 minutes real time on a 2GHz clock speed and 2MB cache processor
- Easily parallelizable with no overhead since cell topology generation is independent

Evaluation of Manufacturability

Horizontal wires					


- Probability of survival (POS) from:
 - Overlay of Poly/M1/Active to contacts and poly-to-active (normal distribution)
 - Contact-hole failures
 - Particle defects: place wires on equally spaced tracks, use a compact model for CAA for M1/poly/contact shorts/opens and gate-to-contact shorts. Example for M1/poly wires:

Evaluation of Variability

- We consider the sources:
 - diffusion and poly imperfections under average overlay error and line-end pullback (corner-rounding, line-end tapering)
 - CD variability (using distribution)
- Variability index is the total change in drive current

$$\Delta(\frac{W}{L}) = \frac{\sum_{allgates} \left| \Delta(\frac{W}{L})_i \right|}{(\frac{W_{tot}}{L})_{ideal}}$$


where *i* is the source of variability

Experimental Setup

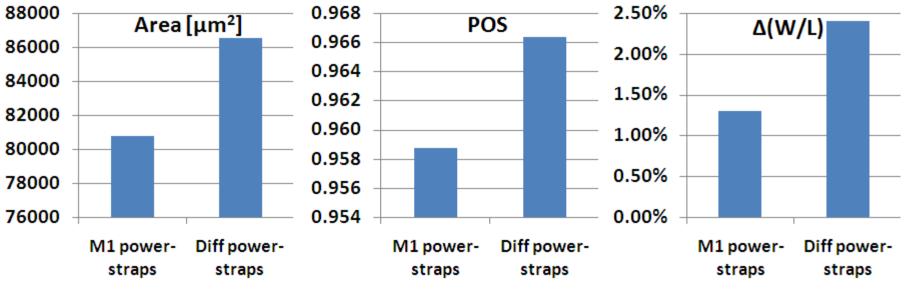
- 45nm FreePDK and 65nm process from a commercial vendor
- Benchmark designs varying from 4K to 43K cells synthesized using Nangate 45nm Open Cell Lib (scaled for 65nm testing)
- POS values normalized to a 10x10mm chip-area
- Baseline experiment with:
 - 1D-poly (non-fixed pitch)
 - M1 power-straps
 - 9-track cell-height

Evaluation of Poly-Restrictions

1.00%

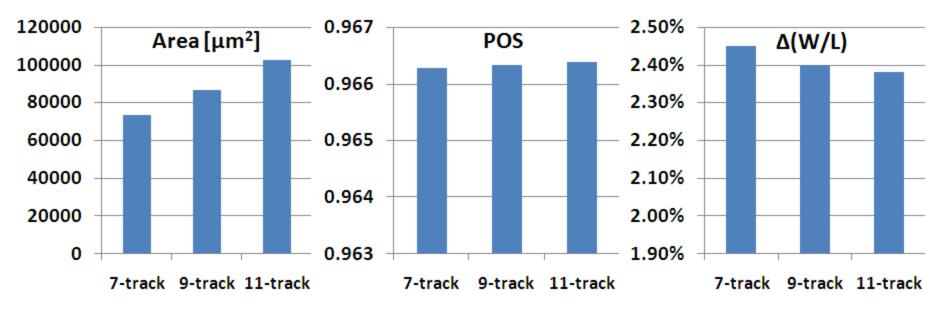
0.50%

0.00%


2D-poly

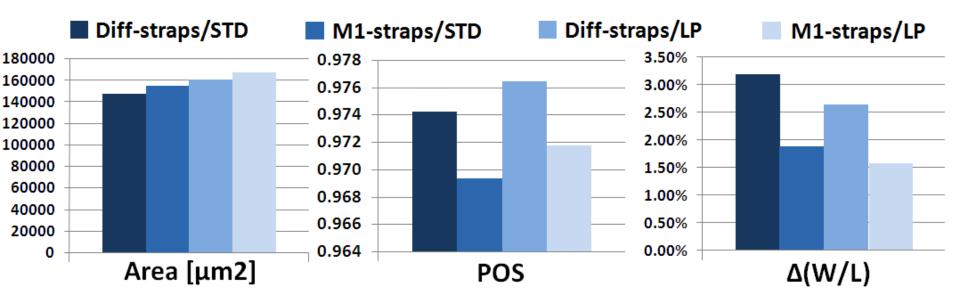
1D-poly

Fixed pitch

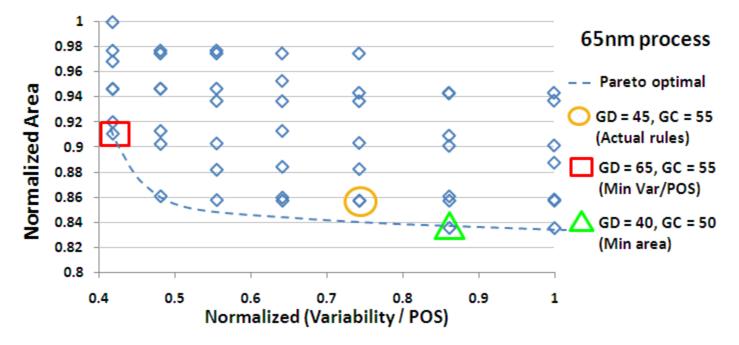

- 2D vs. 1D-poly
 - Almost identical cell-area due to pairing and small overhead for gate-alignment according to FreePDK DRs
 - 32% less variability with 1D-poly
- Fixed vs. non-fixed pitch 1D-poly
 - 23% less variability
 - 5% area overhead because min = contacted gate pitch

Evaluation of Power-Strap Styles

- 7% area overhead with diff straps (not true for small cell-height)
 - Specific to FreePDK, opposite results for 65nm commercial process
- 84% larger variability with diff-power straps
 - diffusion-rounding is dominant in tested cells
- Manufacturability benefits of diffusion power straps:
 - Gate-to-contact shorts are reduced
 - Contact redundancy for power connections on power rail (no cost)


Evaluation of Cell-Height

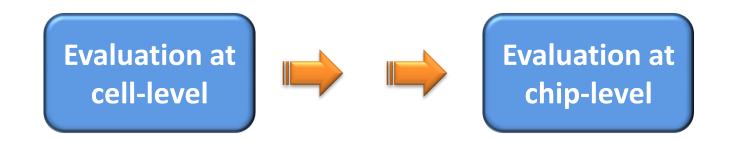
- Minor effect of cell-height decision on variability


 poly rounding and line-end tapering affected by cell-height
 decision are second-order sources of variability
- In general, smaller cell-height \rightarrow smaller area,
 - Not true for (large) cells in high-performance designs

Comparison of DRs from Different Processes

- Compare DRs of std and LP 65nm process from same vendor with diffusion/M1 power-strap style and 1D-poly patterning
 - LP better in terms of variability and manufacturability, but std process is more area-efficient (7.9% less area)

Exploration of Gate-Spacing Rules



- Consider gate-to-diffusion (GD) and gate-to-contact (GC) rules in 65nm process and use diff power-straps and 1D-poly styles
 - Solution corresponding to process GD/GC actual values falls very near the Pareto optimal frontier
 - example shows the fidelity of our evaluation metrics and approach

Summary

- Flexible framework for:
 - Early co-evaluation of technologies, DRs, and cell library architectures *before* exact process and design technologies are known
 - Compare DRs from different processes
 - Can be used in DR optimization loops to narrow down on reasonable DR choices
- C++ source code available for download at <u>http://nanocad.ee.ucla.edu/Main/Projects</u>

Future Work

- Address DR effects on other layout characteristics including performance, power, and some notion of designability
- Introduce a 2D printability model (not based on field simulation)
- Extrapolate DR evaluation to the chip level and include intermediate and global metal/via layers
- Study interactions and tradeoffs of variability and area

Thank you!

Questions?

Backup Slides

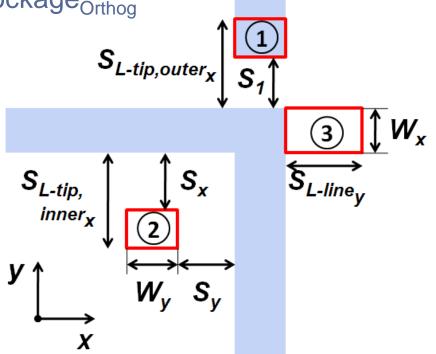
Runtime Improvement in Chaining

- **Problem:** Runtime for cells with trans folded into large # of folds
- Special case for inverters/buffers
 - Detect them based on connectivity info in netlist
 - Force chaining of fingers of folded trans
 - Give preference to sharing output signal so that power signal is at the edge allowing its sharing with other transistors
 - Runtime improvement at no overhead
- If trans is folded into large # of fingers (user-specified)
 - Group fingers into multiple groups (user-specified)
 - Treat each group as a single pair during chaining
 - Unfold finger groups after chaining is complete
 - Runtime improvement at negligible overhead

Runtime Improvement in Chain-Ordering

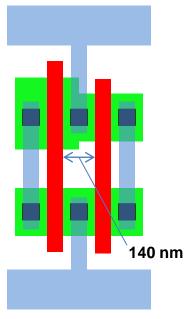
- Problem:
 - Runtime of chain-ordering with exhaustive search in cells with large # of chains
- Let user specify limit on # of chains for exhaustive search (Lim)
- For cells with # of chains > Lim:
 - Partition chains into groups with # of chains ≤ Lim using FM algorithm to minimize connection cuts between partitions
 - Exhaustive search to order partitions
 - Exhaustive search to order chains within each partition separately while taking the order of partition into account

M1-Congestion Estimation

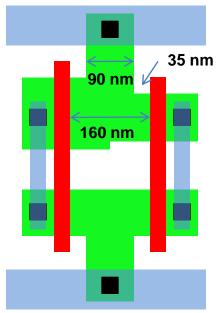

• Estimate congestion of vertical/horizontal tracks based on wire length and blockage by wires in orthogonal direction

C = Occupied Track-Length / Available TL

= (WL + Blocked TL) / Available TL


Blocked TL = Blockage_{Actual} + Blockage_{Orthog}

- Example of L-bend with tip facing outer corner:
 - (1) and (2) are actually blocked
 - (3) effectively increases
 wirelength in orthogonal
 direction


Outcomes Depend on Set of DRs

- Special characteristics of FreePDK DRs, e.g.:
 - Too small gate-to-contact spacing => huge effect on POS results for case of redundant contacts
 - Large area overhead for fixed gate-pitch with diffusion power connection

Power connection with M1

Contacted pitch = min pitch

Power connection with diffusion

Have to increase cell-width to next allowable pitch

27

UCLA_DRE Supported Rules

- Layout styles
 - Poly patterning (2D/limited/1D/fixed-pitch)
 - Power-straps (Metal/Active)
- DRs
 - Poly: LEE, LEG, gate-to-CA, gate-to-active, gate-pitch, etc...
 - Active: spacing, min width, extension beyond gate, etc...
 - CA: width, spacing, poly/active enclosure, CA to active, etc...
 - M1: width, 2D-spacing rules, overhang rules
 - M2/Via1 (ongoing): width, 2D-spacing rules
 - Mx in chip-level evaluation (ongoing)
 - Well (ongoing): active-to-well edge