On the futility of statistical power optimization

Jason Cong Puneet Gupta John Lee UCLA

> Sponsored by SRC Contract 2006-TJ-1460, NSF award 811832, and UC Discovery Grant ele07-10283

Power Variability

From ITRS Roadmap 2007 (Design)

Statistical Power Optimization

- Costs of upgrading to Statistical Power Optimization
 - Tools
 - Programming
 - Validation
 - Modeling
 - Extract statistics (Monte-Carlo runs)

Limitations of Statistical Power Optimization

- Errors in modeling physical behavior
- Errors in predicting input / output combinations

Statistical Power Optimization

What is the value of Statistical Power Optimization?

Evaluating the benefits of Statistical Power Optimization

I. Sub-optimality Bounds

- "What is the maximum improvement that can be gained by optimizing statistically?"
- Results for benchmark designs in 45 nm library with gate width sizing

II. Extension to Practical Solvers: Solution Rankings

- Solvers that are non-optimal
- If a deterministic solution is in the top 10% of all deterministic sizings, will it in the top 10% of all statistical solutions?
- Experimental validation for w, l, vt

Statistical Power Optimization

• Works with the statistical power random variable:

$$\mathbf{P} = \mathbf{P}_{1} + \mathbf{P}_{d}$$

$$= \sum_{i} \kappa_{i} w_{i} e^{\alpha l_{i} + \beta l_{i}} e^{-\gamma v_{ii}} e^{\eta_{i} (\Delta \mathbf{L}_{dtd} + \Delta \mathbf{L}_{i,wid})} \quad \text{Statistical Leakage Power}$$

$$+ \sum_{i} \mu_{i} w_{i} (l_{i} + \Delta \mathbf{L}_{dtd} + \Delta \mathbf{L}_{i,wid}) \quad \text{Statistical Dynamic Power}$$

- Optimize w, l, vt
 - Help manage the variability in leakage / dynamic power
 - Make designs aware of the effects of variation

Assumptions

Variations are in gate length only

- Nominal channel length: 45nm
- Die-to-die standard deviation: 1nm
- Within-die standard deviation: .5nm
- Leakage power is Log-Normal
- Deterministic power is linear in gate sizes
 - For l and vt, rewrite in terms of z:

$$\mathbf{p} = k_i (w_i e^{\alpha l_i^2 + \beta_i} e^{-\gamma v_{ti}}) = k_i z_i$$

- Statistical power can then be written as: $p_{\text{statistical}} = k_i z_i e^{\eta_i (\Delta \mathbf{L}_{\text{dtd}} + \Delta \mathbf{L}_{i,\text{wid}})}$
- Commercial tools return the optimal deterministic sizing solution

Contrast with Statistical Delay Optimization

- Benefits of statistical delay optimization have been shown
 - (c.f. Guthaus et. al GLSVLSI 2005)
- Corner based methods are competitive with full statistical delay optimization
 - (Najm DAC 2005, Burns et. al. DAC 2007)
- Our work is separate from the statistical delay question
 - Deterministic delay is used in this work
 - Delay model is only used for an initial deterministic solution

I. Sub-optimality bounds

<u>Given</u>:

- Optimal deterministic sizing solution
 - Synthesized to Nangate Open Cell Library (45nm standard cell library)

Find:

 What is the maximum improvement that can be gained by optimizing statistically?

Example:

Gate width sizing examples for benchmark circuits

Calculating bounds: Overview

- Timing feasible region is complex - difficult to find bounds
- Use a simpler set that contains the timing feasible region
- Optimize over the simpler set to get a lower bound
- Use lower bound to find maximum improvement from Statistical Optimization

Calculating bounds: Example

Gate size 1

Calculating bounds: Step 1

Bounding the timing feasible region

a. Deterministic power is linear in gate sizes, e.g. :

$$p_{\mathrm{d}}(\mathbf{w}) = p(\mathbf{w}_{\mathrm{d}}^*) + \nabla p(\mathbf{w}_{\mathrm{d}}^*)^T (\mathbf{w} - \mathbf{w}_{\mathrm{d}}^*), \quad (\mathbf{w} \in \mathbb{R}^n)$$

b. Deterministic power optimum \mathbf{w}_d^* : smallest power sizing in the timing feasible region:

$$p_{\rm d}(\mathbf{w}) \ge p_{\rm d}(\mathbf{w}_{\rm d}^*) \rightarrow \nabla p(\mathbf{w}_{\rm d}^*)^T (\mathbf{w} - \mathbf{w}_{\rm d}^*) \ge 0$$

Timing feasible region is contained in a simpler region:

$$\{\mathbf{w} \mid p_{\mathrm{d}}(\mathbf{w}) \ge p_{\mathrm{d}}(\mathbf{w}_{\mathrm{d}}^{*})\} \subseteq \{\mathbf{w} \mid \mathbf{0} \le \nabla p(\mathbf{w}_{\mathrm{d}}^{*})^{T}(\mathbf{w} - \mathbf{w}_{\mathrm{d}}^{*})\}$$

Calculating bounds: Step 2

Optimize over the simpler region

Using non-linear programming to solve:

minimize
$$p_{\text{statistical}}(\mathbf{w})$$
Statistical powersubject to $0 \le \nabla p(\mathbf{w}_d^*)^T (\mathbf{w} - \mathbf{w}_d^*)$ Simpler region $\mathbf{w}_{\min} \le \mathbf{w} \le \mathbf{w}_{\max}$ \mathbf{w}_{\min} Simpler region

- The solution w' is a lower bound on the true statistical optimum w^{*}_{statistical}
 - Timing feasible region is relaxed to a larger, continuous region

Calculating bounds: Step 3

Create bound

• w' is a lower bound on the statistical optimum, $\mathbf{w}^*_{\text{statistical}}$

$$p_{\text{statistical}}(\mathbf{w}') \le p_{\text{statistical}}(\mathbf{w}^*_{\text{statistical}}) \quad \left(\le p_{\text{statistical}}(\mathbf{w}^*_{\text{deterministic}})\right)$$
suboptimality gap

Bound the suboptimality gap using the percentage:

$$\delta_{so} = \frac{p_{statistical}(\mathbf{w}_{deterministic}^*) - p_{statistical}(\mathbf{w}')}{p_{statistical}(\mathbf{w}_{deterministic}^*)}$$

Bounds for Benchmarks: Example

Sub-optimality results: Leakage power optimization

ISCAS '85 benchmarks and ALU circuit

Synthesized speeds

	Mean Fower					iviean + 5 Sigma Power					
	v1	v2	v3	v4	avg	v1	v2	v3	v4	avg	
c432	factor	0.3%	0.4%		0.3%	factor	5.3%	7.7%	elowod	6.0%	
c499	103163	0.2%	0.1%	Slowes	0.1%	105165	1.7%	1.0%	SIOWE	1.5%	
c880	0.2%	0.2%	0.2%	0.2%	0.2%	1.7%	2.5%	3.0%	2.6%	2.5%	
c1355			0.2%	0.1%	0.2%	2.1%	1.7%	1.2%	1.2%	1.5%	
c1908		15 '85	0.2%	0.2%	0.2%	2.0%	3.9%	4.1%	4.3%	3.6%	
c2670	0.2%	0.2%	0.2%	0.2%	0.2%	2.8%	2.1%	2.0%	2.0%	2.2%	
c3540	0.2%	0.2%	0.2%	0.2%	0.2%	1.2%	1.7%	2.6%	2.6%	2.0%	
c5315	0.2%	0.2%	0.2%	0.2%	0.2%	2.7%	2.7%	2.5%	2.5%	2.6%	
c6288	0.2%	0.2%	0.2%	0.2%	0.2%	2.0%	1.5%	1.8%	1.1%	1.6%	
c7552	0.2%	0.2%	0.2%	0.2%	0.2%	2.2%	1.2%	1.7%	1.1%	1.5%	
alu	Onen	Cores		0.2%	0.2%	1.9%	2.7%	2.5%	1.2%	2.1%	
		00103									

(Upper bounds on the improvement from using Statistical Power Optimization)

Sub-optimality results: Total power optimization

ISCAS '85 benchmarks and ALU circuit

	Γ	Mean Power		Mean + 3 S	Sigma Powe	r
switching probability	minimum	maximum	average	minimum	maximum	average
1%	~0%	0.003%	~0%	~0%	0.036%	0.006%
0.10%	0.001%	0.004%	0.002%	0.005%	0.055%	0.021%

 The impact of statistical power variations is diminished by the dynamic power

- Dynamic power is larger than leakage power
- Deterministic and statistical dynamic power are highly linearly correlated
- Variations in dynamic power are smaller

II. Solution Rankings

<u>Question</u>

- Suppose the deterministic solution is within the top 5% of all deterministic sizings
- Will this also be in the top 5% of all statistical solutions?

Experimental validation

- Generated random w, l, vt assignments
- For each assignment:
 - Compared the deterministic power with the statistical power

Solution Rankings

Deterministic Power vs. Statistical Power (random size assignments)

Deterministic Power of sample

Quantifying the correlation

The deterministic and statistical powers are nearly linear relations:

$$p_{\text{statistical}}(w, l_{eff}, V_t) = \left(\alpha p_{\text{deterministic}}(w, l_{eff}, V_t) + \beta\right)$$
 linear

+error(
$$w, l_{eff}, V_t$$
)

Error statistics:

Leakage Power								
	Mean P	ower		Mean + 3 Sigma Power				
variables	min	max	avg	min	max	avg		
W	.004%	.03%	.01%	.07%	.65%	.19%		
w, vt	.009%	.08%	.02%	.15%	1.8%	.46%		
w, vt, l	.016%	.14%	.04%	.36%	3.5%	.86%		
, ,				1				

Total Power (*switching frequency* = .001)

			0		y	/
w, vt, l	.005%	.10%	.024%	.077%	3.3%	.98%

Summary

Presented framework to:

- Bound the maximum improvement that can be gained by optimizing statistically
- Experimentally compare the statistical quality of a deterministic sizing

Statistical power optimization gives modest gains

- Leakage power: on average 2-3% improvement at best
- Total power: < 1% improvement at best</p>

Quality deterministic power solutions are quality statistical power solutions

- The values correlate nearly linearly with small error
- Expect the sub-optimality to be small

Future Goals

- Model Vt variations
- Statistical delay measures
- Generalized distributions