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Statistical Power Optimization

 Costs of upgrading to Statistical Power Optimization

– Tools

– Programming

– Validation

– Modeling

– Extract statistics (Monte-Carlo runs)

 Limitations of Statistical Power Optimization

– Errors in modeling physical behavior

– Errors in predicting input / output combinations
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Statistical Power Optimization

 Power measures are similar

What is the value of Statistical Power Optimization?
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Evaluating the benefits of Statistical 
Power Optimization

I. Sub-optimality Bounds

– “What is the maximum improvement that can be gained by 

optimizing statistically?”

– Results for benchmark designs in 45 nm library with gate width 

sizing

II. Extension to Practical Solvers: Solution Rankings

– Solvers that are non-optimal

– If a deterministic solution is in the top 10% of all deterministic 

sizings, will it in the top 10% of all statistical solutions?

– Experimental validation for w, l, vt
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Statistical Power Optimization

 Works with the statistical power random variable:

 Optimize w, l, vt 

– Help manage the variability in leakage / dynamic power

– Make designs aware of the effects of variation
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Assumptions

 Variations are in gate length only

– Nominal channel length: 45nm

– Die-to-die standard deviation: 1nm

– Within-die standard deviation: .5nm  

 Leakage power is Log-Normal

 Deterministic power is linear in gate sizes

– For l and vt, rewrite in terms of z:

– Statistical power can then be written as:

 Commercial tools return the optimal deterministic 

sizing solution
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Contrast with 
Statistical Delay Optimization

 Benefits of statistical delay optimization have been 

shown 

– (c.f. Guthaus et. al GLSVLSI 2005)

 Corner based methods are competitive with full 

statistical delay optimization 

– (Najm DAC 2005, Burns et. al. DAC 2007)

 Our work is separate from the statistical delay 

question

– Deterministic delay is used in this work

– Delay model is only used for an initial deterministic solution
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I. Sub-optimality bounds

Given:

 Optimal deterministic sizing solution

– Synthesized to Nangate Open Cell Library (45nm standard cell library)

Find:

 What is the maximum improvement that can be 

gained by optimizing statistically?

Example:

 Gate width sizing examples for benchmark circuits
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Calculating bounds: Overview

 Timing feasible region is 

complex - difficult to find 

bounds

 Use a simpler set that 

contains the timing feasible 

region

 Optimize over the simpler 

set to get a lower bound

 Use lower bound to find 

maximum improvement from 

Statistical Optimization

Timing
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Simple

Containing

Set
Lower 

Bound

Deterministic

Optimum
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Calculating bounds: Example

Corresponding Statistical Value

Iso-power plane

Minimum Statistical Value

in half-space

(lower bound) Timing feasible region

Deterministic Power Measure

Statistical Power Measure

Sizes with greater 

deterministic power

Deterministic Optimum

Timing feasible region is

Bounded by half-space!!!

Gate size 1

P
o

w
e
r

 Visual example: two gates
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Calculating bounds: Step 1

Bounding the timing feasible region

a. Deterministic power is linear in gate sizes, e.g. :

b. Deterministic power optimum      : smallest power 

sizing in the timing feasible region:

Timing feasible region is contained in a simpler 

region:
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Calculating bounds: Step 2

Optimize over the simpler region

 Using non-linear programming to solve:

 The solution       is a lower bound on the true 

statistical optimum            

– Timing feasible region is relaxed to a larger, continuous region
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Calculating bounds: Step 3

Create bound

 is a lower bound on the statistical optimum,

 Bound the suboptimality gap using the percentage:
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Bounds for Benchmarks: Example

c3540 circuit
Deterministic

Power
Optimization

Optimized
Sizes for
Deterministic
Power

Lower Bound
Calculation

Deterministic Power: 13.08 µW
Mean Power: 13.24 µW
Mean + 3 Sigma Power: 17.35 µW

Mean Power Lower Bound: 13.21 µW

Mean+3 Sigma Power Lower Bound: 16.91 µW

Worst Case Sub-optimalities:

Mean Power : .24% (= 13.24-13.21) / 13.24

Mean + 3 Sigma :      2.5% (= 17.35-16.91) / 17.35

so

so



16

v1 v2 v3 v4 avg v1 v2 v3 v4 avg

c432 0.2% 0.3% 0.4% 0.4% 0.3% 2.6% 5.3% 7.7% 8.5% 6.0%

c499 0.2% 0.2% 0.1% 0.1% 0.1% 2.1% 1.7% 1.0% 1.2% 1.5%

c880 0.2% 0.2% 0.2% 0.2% 0.2% 1.7% 2.5% 3.0% 2.6% 2.5%

c1355 0.2% 0.2% 0.2% 0.1% 0.2% 2.1% 1.7% 1.2% 1.2% 1.5%

c1908 0.2% 0.2% 0.2% 0.2% 0.2% 2.0% 3.9% 4.1% 4.3% 3.6%

c2670 0.2% 0.2% 0.2% 0.2% 0.2% 2.8% 2.1% 2.0% 2.0% 2.2%

c3540 0.2% 0.2% 0.2% 0.2% 0.2% 1.2% 1.7% 2.6% 2.6% 2.0%

c5315 0.2% 0.2% 0.2% 0.2% 0.2% 2.7% 2.7% 2.5% 2.5% 2.6%

c6288 0.2% 0.2% 0.2% 0.2% 0.2% 2.0% 1.5% 1.8% 1.1% 1.6%

c7552 0.2% 0.2% 0.2% 0.2% 0.2% 2.2% 1.2% 1.7% 1.1% 1.5%

alu 0.2% 0.2% 0.2% 0.2% 0.2% 1.9% 2.7% 2.5% 1.2% 2.1%

Mean Power Mean + 3 Sigma Power

Sub-optimality results: 
Leakage power optimization

ISCAS ’85 benchmarks and ALU circuit

Synthesized speeds

ISCAS ’85

Open Cores ALU

(Upper bounds on the improvement from using Statistical Power Optimization)

fastest slowest fastest slowest
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Sub-optimality results: 
Total power optimization

ISCAS ’85 benchmarks and ALU circuit

 The impact of statistical power variations is 

diminished by the dynamic power

– Dynamic power is larger than leakage power

– Deterministic and statistical dynamic power are highly linearly 

correlated

– Variations in dynamic power are smaller

Mean Power Mean + 3 Sigma Power

switching 

probability minimum maximum average minimum maximum average

1% ~0% 0.003% ~0% ~0% 0.036% 0.006%

0.10% 0.001% 0.004% 0.002% 0.005% 0.055% 0.021%
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II. Solution Rankings

Question

 Suppose the deterministic solution is within the top 

5% of all deterministic sizings

 Will this also be in the top 5% of all statistical 

solutions?

Experimental validation

 Generated random w, l, vt assignments

 For each assignment:

– Compared the deterministic power with the statistical power
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Solution Rankings

Deterministic Power vs. Statistical Power 
(random size assignments)

Relation is nearly linear!

(Small amount of noise)

Mean + 3 Sigma Power

Mean Power

10%

~10%

Benchmark c432
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Quantifying the correlation

 The deterministic and statistical powers are nearly 

linear relations:

 Error statistics:

 determinisstatistical tic( , , ) ( , , )

error( ,  , )

eff t eff t

eff t
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variables min max avg min max avg

w .004% .03% .01% .07% .65% .19%

w, vt .009% .08% .02% .15% 1.8% .46%

w, vt, l .016% .14% .04% .36% 3.5% .86%

w, vt, l .005% .10% .024% .077% 3.3% .98%

Leakage Power

Mean Power Mean + 3 Sigma Power

Total Power (switching frequency = .001 ) 

linear
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Summary

 Presented framework to:

– Bound the maximum improvement that can be gained by optimizing 

statistically

– Experimentally compare the statistical quality of a deterministic sizing

 Statistical power optimization gives modest gains

– Leakage power: on average 2-3% improvement at best

– Total power: < 1% improvement at best

 Quality deterministic power solutions are quality 

statistical power solutions

– The values correlate nearly linearly with small error

– Expect the sub-optimality to be small
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Future Goals

 Model Vt variations

 Statistical delay measures

 Generalized distributions


