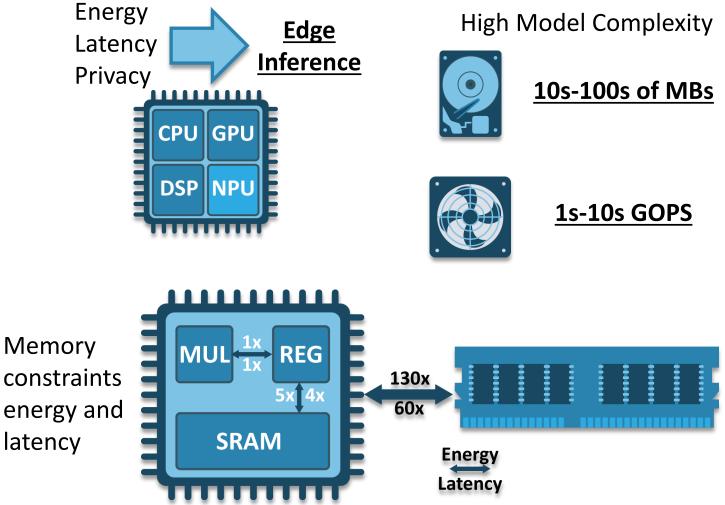


Training Neural Networks for Execution on Approximate Hardware

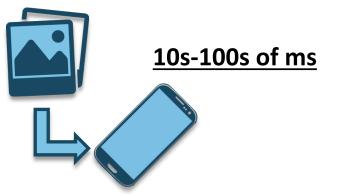
SPONSORED BY: DARPA, ONR

TIANMU LI, SHURUI LI, PUNEET GUPTA

Limits of Edge Machine Learning



Non-Real Time Performance



Possible Solution

Approximate

Computing

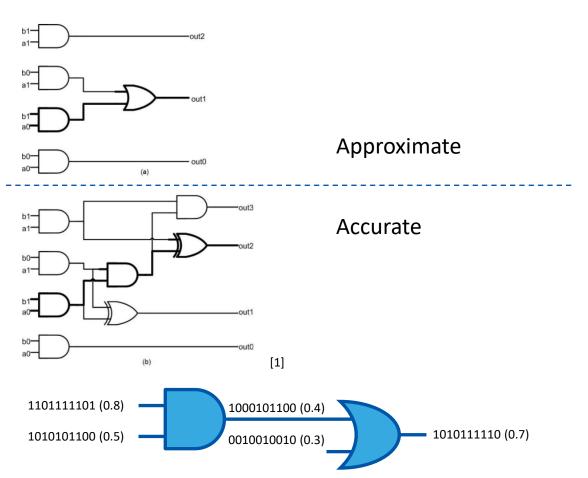
latency

Images: Freepik.com

NanoCAL

Benefits of Approximate Computing

- Approximate computing methods trade some accuracy for improved performance
- Approximate multiplication
 - Introduce error for specific input combinations
 - Simplified logic design
- Analog computing
 - Low-cost multiply-accumulate
 - Reduced memory movements
- Stochastic computing
 - Randomized bit streams
 - Single-gate multiplication and addition

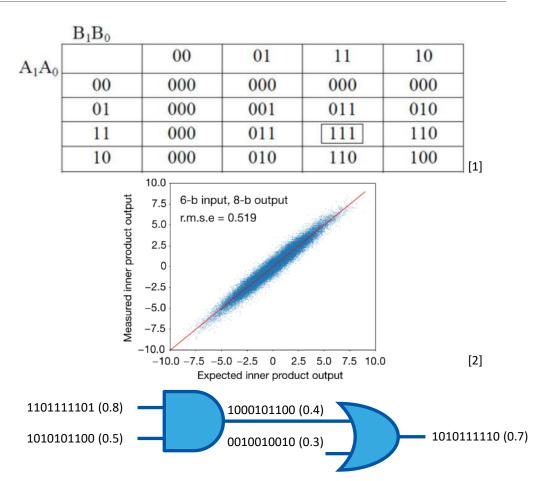


NanoCA

[1] P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading Accuracy for Power with an Underdesigned Multiplier Architecture," in Proc. IEEE/ACM International Conference on VLSI Design, 2011

Training for Approximate Computing

- Approximate computing introduces error
- Approximate multiplication
 - Error for certain input combinations
 - Uneven error curve
- Analog computing
 - Physical variations
 - Analog-to-digital converter limits accumulation range and precision
- Stochastic computing
 - Random bit stream error
 - Non-linear accumulation



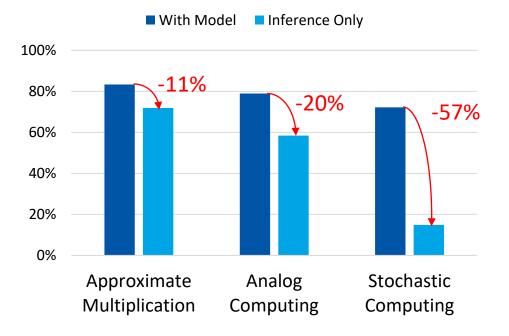
NanoCAL

P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading Accuracy for Power with an Underdesigned Multiplier Architecture," in *Proc. IEEE/ACM International Conference on VLSI Design*, 2011
 Wan, W., Kubendran, R., Schaefer, C. et al., "A compute-in-memory chip based on resistive random-access memory", *Nature 608, 504–512*, 2022

Training for Approximate Computing

- Approximate computing errors are not modeled in floating/fixed-point training
 - Inaccurate representation
 - Random multiplication error
 - Non-linear addition
- Approximate computation needs to be modeled during training
 - Inferencing using a fixed-point model reduces accuracy
 - Approximate computing needs to be modeled in <u>both</u> forward and backward pass
 - Not modeling approximate computing drops accuracy by <u>11-57%</u>

Accuracy Without Modeling



Forward Pass Modeling

- Accurate modeling of approximate computing is expensive
 - CPU/GPUs do not have native operators for approximate computation
 - Requires software simulation

Emulation Cost Estimation

	Multiplication	Addition
Floating Point	0.5 (fused)	0.5 (fused)
Stochastic Computing	64 (unrolled) 2 (packed)	64 (unrolled) 2 (packed)
Approximate Multiplication	86	1
Analog Computing	1	9

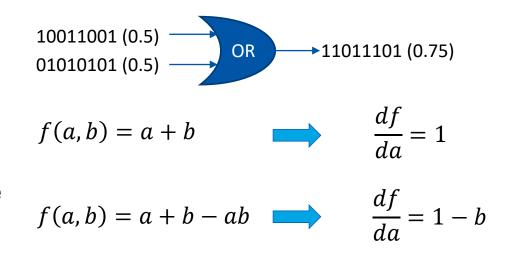
int mult_evo(int a, int b)	int sig_209 = sig_206 & wb[6];
int wa[7];	int sig 210 = sig 181 ^ sig 191;
int wb[7];	int sig 211 = sig 181 & sig 191;
int y = 0;	int sig 212 = sig 210 & sig 177;
wa[0] = (a >> 0) & 0x01;	int sig 213 = sig 218 ^ sig 177;
wb[0] = (b >> 0) & 0x01;	int sig_214 = sig_211 sig_212;
wa[1] = (a >> 1) & 0x01;	int sig 215 = sig 186 ^ sig 192;
wb[1] = (b >> 1) & 0x01;	int sig_216 = sig_186 & sig_192;
wa[2] = (a >> 2) & 0x01;	int sig 217 = sig 215 & sig 182;
wb[2] = (b >> 2) & 0x01;	int sig 218 = sig 215 ^ sig 182;
wa[3] = (a >> 3) & 0x01;	int sig_219 = sig_216 sig_217;
wb[3] = (b >> 3) & 0x01;	int sig 220 = sig 157 ^ sig 193;
wa[4] = (a >> 4) & 0x01;	int sig 221 = sig 157 & sig 193;
wb[4] = (b >> 4) & 0x01;	int sig_222 = sig_220 & sig_187;
wa[5] = (a >> 5) & 0x01;	int sig 223 = sig 228 ^ sig 187;
wb[5] = (b >> 5) & 0x01;	int sig 224 = sig 221 ^ sig 222;
wa[6] = (a >> 6) & 0x01;	int sig 231 = wb[3] & wa[5];
wb[6] = (b >> 6) & 0x01;	int sig 232 = sig 213 ^ sig 209;
<pre>int sig_83 = wa[6] & wb[3];</pre>	int sig_233 = sig_213 & sig_209;
<pre>int sig_113 = wa[6] & wb[2];</pre>	int sig_234 = sig_232_& sig_231;
int sig_119 = wa[5] & ub[4]:	in aig 125 - aig 122 A aig 221.
int sig_128 = w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w	
int sig_144 - we s] [1] :	int sig 257 - sig 218 ^ sig 214;
<pre>int sig_145 = wb[5] & wa[4]; int sig_146 = sig_83 ^ sig_119;</pre>	int sig 238 = sig 218 & sig 214;
int sig_147 = sig_83 & sig_119;	int sig_239 = sig_237 & sig_236;
int sig 148 = sig 146 & sig 113;	int sig_240 = sig_237 ^ sig_236;
int sig_149 = sig_146 ^ sig_113;	int sig 241 - sig 238 ^ sig 239;
int sig_150 = sig_147 ^ sig_148;	int sig 242 = sig 223 ^ sig 219;
int sig 155 - wa[4] & wb[5];	int sig 243 = sig 223 & sig 219;
int sig 156 = wa[5] & wb[5];	int sig 244 - sig 242 & sig 241;
int sig 157 - wa[6] & wb[5];	int sig 245 = sig 242 ^ sig 241;
<pre>int sig_172 = wb[6] & wa[2];</pre>	int sig 246 = sig 243 sig 244;
int sig 173 - sig 144 ^ wa[3];	int sig 247 = sig 194 ^ sig 224;
int sig_174 = sig_144 & wb[4];	int sig 248 = wb[6] & sig 224;
<pre>int sig_175 = sig_173 & wb[5];</pre>	int sig 249 = sig 247 & sig 246;
int sig_177 = sig_174 sig_175;	int sig_250 = sig_247 ^ sig_246;
<pre>int sig_178 = sig_149 ^ sig_155;</pre>	int sig_251 = sig_248 ^ sig_249;
<pre>int sig_179 = wa[4] & wb[5];</pre>	y = (sig_175 & 0x01) << 0; // default output
<pre>int sig_181 = sig_178 ^ sig_145;</pre>	y = (sig_237 & 0x01) << 1; // default output
<pre>int sig_182 = sig_179;</pre>	y = (sig_194 & 0x01) << 2; // default output
<pre>int sig_183 = sig_120 ^ sig_156;</pre>	y = (sig_224 & 0x01) << 3; // default output
int sig_184 = sig_120 & sig_156;	y = (sig_205 & 0x01) << 4; // default output
int sig_185 = sig_183 & sig_150;	y = (sig_205 & 0x01) << 5; // default output
int sig_186 = sig_183 ^ sig_150;	y = (sig_120 & 0x01) << 6; // default output
<pre>int sig_187 = sig_184 ^ sig_185;</pre>	y = (sig_175 & 0x01) << 7; // default output
<pre>int sig_191 = wa[3] & wb[6]; int sig_192 = wa[4] & wb[6];</pre>	y = (sig_208 & 0x01) << 8; // default output
<pre>int sig_192 = wa[4] & wb[6]; int sig_193 = wa[5] & wb[6];</pre>	y = (sig_235 & 0x01) << 9; // default output
<pre>int sig_193 = wa[5] & wb[6]; int sig_194 = wa[6] & wb[6];</pre>	y - (sig_240 & 0x01) << 10; // default output
<pre>int sig_194 = wa[6] & wb[6]; int sig_205 = wa[1] & wb[6];</pre>	y = (sig_245 & 0x01) << 11; // default output
int sig_205 = wa[1] & wb[6]; int sig_206 = wa[1] & wa[2];	y = (sig_250 & 0x01) << 12; // default output
int sig_208 = sig_205 ^ sig_172;	y = (sig_251 & 0x01) << 13; // default output
int sig_209 = sig_206 & wb[6];	return y;
int sig_200 = sig_200 a wb[0]; int sig_210 = sig_181 ^ sig_191;	B

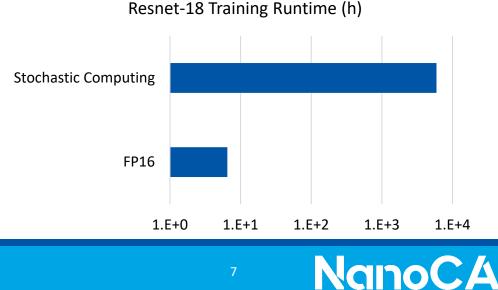
Approximate Multiplier Simulation

NanoCAL

Backward Pass Modeling

- Some approximate computation methods introduce non-linearities in dot products
 - Stochastic OR adder performs a + b ab
 - Analog computing is limited by the range of analog-to-digital conversion
- Modeling non-linear accumulation is expensive
 - Gradients w.r.t to addition need to be computed
 - Additions need to be broken up to model accurately
 - Breaking up additions increase runtime by <u>>100X</u>



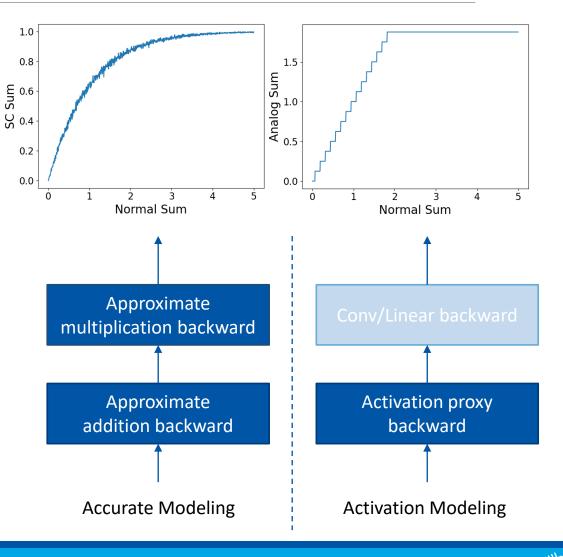


Overview

- Methodology
 - Backward pass approximate proxy activation
 - Forward pass error injection + fine tuning
 - Memory management gradient checkpointing
- Results
 - Accuracy impact
 - Runtime impact

Backward: Activation Proxy Modeling

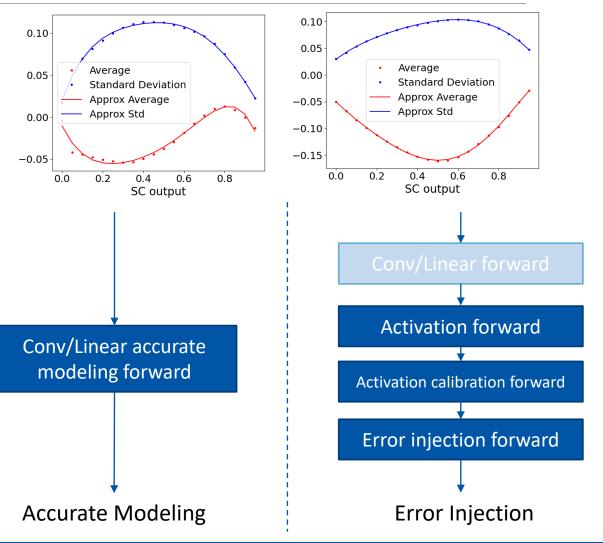
- Modeling approximate computing in the backward pass is expensive
 - Error profile is not a smooth function
 - Modeling non-linearity requires breaking up additions
- Small gradient error does not impact convergence
- Approximate non-linearity using an activation function
 - Cheap to implement (point-wise function)
 - Allows usage of optimized backward functions



NanoCA

Forward: Error Injection

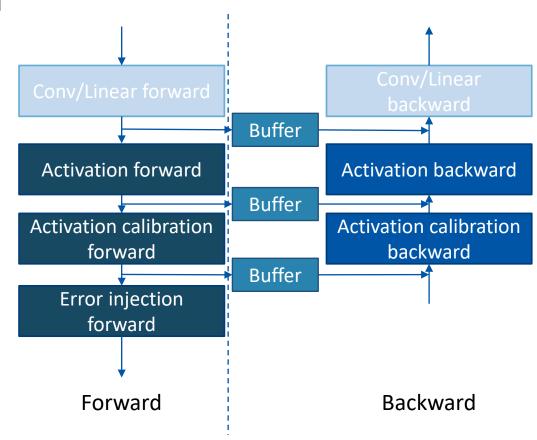
- Output error is a function of output value
 - Average error: modified activation function
 - Random error: error injection
- Replace accurate modeling with error injection
 - Fit error profile to polynomial functions
 - Calibrate error profile during training



NanoCA

Gradient Checkpointing

- Activation proxy and activation calibration add computation nodes during training
 - Increases memory requirements

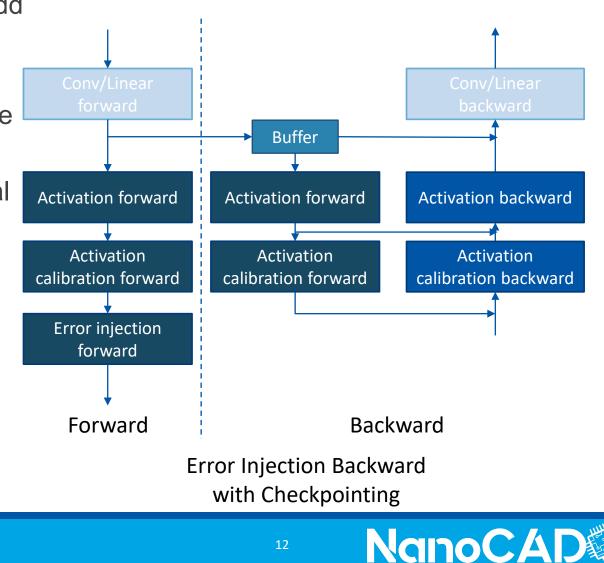


Error Injection Backward

NanoCAD

Gradient Checkpointing

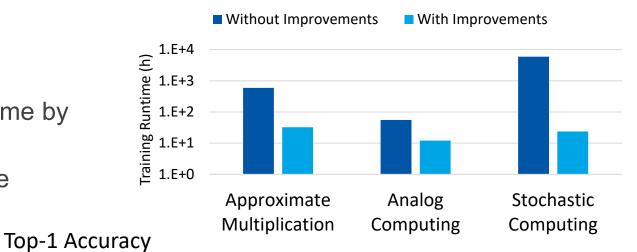
- Activation proxy and activation calibration add computation nodes during training
 - Increases memory requirements
- Use gradient checkpointing to recompute the layers during backward pass
- Reduces memory requirements with minimal performance costs
 - Added layers are point-wise
- Allows bigger batch sizes for large models

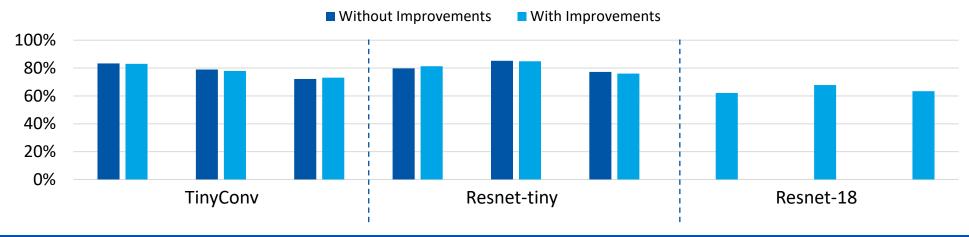


Results

- Evaluation:
 - Platform: PyTorch, single RTX 3090
 - TinyConv/Resnet-tiny CIFAR-10
 - ImageNet Resnet-18
- Our improvements reduce training runtime by 4.6X to 250X
- Enables training large models which are previously difficult/impossible to train

End-to-end Training Runtime (Resnet-18)





NanoCA

Conclusion

- Improve training performance for approximate computing hardware
- Use activation proxies to approximate non-linearities in the backward pass
- Use error injection and fine tuning in the forward pass to reduce expensive emulation and retain accuracy
- Use gradient checkpointing to remove memory overhead of the added computation
- Reduce end-to-end training time by <u>4.6X</u> to <u>250X</u>
- Allow training of large models for approximate computing

