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Abstract: Here we introduce a novel amplitude-only Fourier-optical processor paradigm and 
demonstrate a prototype system capable of processing large-scale ~(2,000x1,000) matrices in a 
single time-step and 100 microsecond-short latency, for accelerating machine-learning 
applications. 

Machine-intelligence has become a driving factor in modern society. However, its demand outpaces the underlying 
electronic technology due to limitations given by fundamental physics such as capacitive charging of wires, but also 
by system architecture of storing and handling data, both driving recent trends towards processor heterogeneity [1]. 
Task-specific accelerators [2] such as photonic tensor cores [3], and those based on free-space optics [4] bear 
fundamental homomorphism for massively parallel and real-time information processing given the wave-nature of 
light [5-7]. However, initial results are frustrated by data handling challenges and slow optical programmability. Here 
we introduce a novel 
amplitude-only 
Fourier-optical 
processor paradigm 
capable of 
processing large-
scale ~(1,000 × 
1,000) matrices in a 
single time-step and 
100 microsecond-
short latency (Fig. 
1). Conceptually, the 
information-flow 
direction is 
orthogonal to the 
two-dimensional 
programmable-
network, which 
leverages 106-
parallel channels of 
display technology, 
and enables a 
prototype 
demonstration 
performing 
convolutions as 
pixel-wise 
multiplications in the 
Fourier domain 
reaching peta 
operations per 
second throughputs. 
The required real-to-

Figure 1. Amplitude only Fourier Neural Network. a Schematic representation of a 4f system based 
on a Digital Micromirror Devices (DMDs). The amplitude of a low power light source is modulated 
according to a pattern (input data). The image so generated is Fourier transformed and multiplied with a 
reference data in the Fourier plane of a 4f system, affecting only its amplitude. The result of the product 
is inverse transformed, and the square of its intensity is imaged by the camera showcasing the same 
spatial resolution (pixel size and pitch) of the DMDs. b Experimental implementation of the amplitude 
only Fourier filter based on a DMD 4F system. c Convolutional Neural Network (CNN) structure for 
CIFAR 10 dataset. The optical Amplitude only Fourier filter is used as convolution layer, with the 
subsequent layers realized electronically. The kernels obtained during physically meaningful training are 
loaded in the 2nd DMD. After a convolution layer a nonlinear thresholding is applied to the output 
(Rectified Linear unit function) and are pooled together. A flatten layer collapses the spatial dimensions 
of the output into the channel dimension to which follows a fully connected layer and a nonlinear 
activation function. d Flow-chart of the training process. Physical model of the amplitude only Fourier 
filter layer is used for training the entire CNN. (c), obtaining the weights for the kernel to be loaded in 
the 2nd DMD of the convolution layer. Experimentally obtained results of the Amplitude Only Fourier 
filtering are fed to the FC layer for performing the final prediction on unseen data.  

AW3E.5 CLEO 2021 © OSA 2021

© 2021 The Author(s)

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 02:21:38 UTC from IEEE Xplore.  Restrictions apply. 



Fourier domain transformations are performed passively by optical lenses at zero-static power. We exemplary realize 
a convolutional neural network (CNN) performing classification tasks on 2-Megapixel large matrices at 10 kHz rates, 
which latency-outperforms current GPU and phase-based display technology by one and two orders of magnitude, 
respectively (Fig. 2). Training this optical convolutional layer on image classification tasks and utilizing it in a hybrid 
optical-electronic CNN, shows classification accuracy of 98% (MNIST) and 54% (CIFAR-10). Interestingly, the 
amplitude-only CNN is inherently robust against coherence noise in contrast to phase-based paradigms and features 
an over 2 orders of magnitude lower delay than liquid crystal-based systems. Such an amplitude-only massively-
parallel optical compute-paradigm shows that the lack of phase-information can be accounted for via trained, thus 
opening opportunities for high-throughput accelerator technology for machine-intelligence with applications in 
network-edge processing, in data centers, or in pre-processing information or filtering towards near real-time decision 
making. This amplitude-only electro-optic Fourier filter engine prototype offers high-speed kernel programmability 
and data throughput (Fig. 1&2). The dynamic Fourier filtering is realized using digital micromirror devices, both in 
the object and Fourier plane of an optical 4f system. As a proof-of-principle demonstration, we constructed a Neural 
Network which uses, as convolutional layer, the electro-optical convolutional engine for classifying handwritten digits 
(MNIST) and color images (CIFAR-10). We trained the network off-chip, using a detailed physical model which 
describes the electro-optical system and its nonidealities, such as optical aberrations and misalignments. After 
experimentally validating the model and retraining the following fully-connected layer to compensate for values 
discrepancies, we obtained a classification accuracy of 98% and 54% for MNIST and CIFAR-10, respectively, with a 
throughput up to 1,000 convolutions per seconds between two 2MP images, which is one order of magnitude faster 
than the state-of-the-art GPU. Additionally, our scientific contribution emphasizes that the information loss and 
inaccuracies deriving from neglecting the phase of the optical wave front can be compensated-for by the degree of 
robustness provided by neural network training, which yields intelligent classification, at high accuracy as the one 
obtained by phase-only optical engine, while featuring a 160x  faster programmability. Future systems could be 

augmented with photonic DACs [8] for applications where data is present in the optical domain. We built, and tested 
a massively parallel (2 million channel) optical convolutional Fourier processor and  demonstrate signal process 
capability with fast (~0.1ms) updating filters using a dual digital-mirror-display 4f-system approach. Offline trained 
kernels and performing inference classification tasks on CIFAR-10 dataset of this 1-layer convolutional processor 
shows an encouraging (-10%) accuracy against full-precision [9]. For funding support see Ref [10].    
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Figure 2. Performance of the amplitude-only optical Fourier 
engine and its performance potential.  a Comparison of total 
processing time for performing a convolution as function of the image 
(matrix) resolution (expressed in Megapixels) comparing the 
Amplitude-only Fourier Filter (red solid line) to the P100 Nvidia 
GPU (blue-dashed line fitting, experimental data dots) and a 4f 
system based on Spatial Light Modulators (grey line). Here, we 
consider the convolution between two images (input and kernel) 
sharing the same pixel resolution expressed in MPx. The 2MPx mark 
set the current maximum resolution of the DMD of this experimental 
realization but does not represent a technological limit. Pie chart 
illustrates the breakdown of the latency for the DMD based 4f system 
when performing convolution. The overall latency consists of the 
DMD operation time (switching speed of the mirrors – green slice), 
camera integration time (yellow slice) and time of flight of the photon 
in the optical setup (violet slice).  
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