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Abstract: We demonstrate an electro-optical hybrid massively-parallel Fourier Neural Network 
exploiting Digital Micromirror Devices performing amplitude-only filtering, achieving ~10,000 2-
Megapixel convolutions per second, preserving the inference accuracy level similar to phase-
based approaches. 
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1. Instruction 

1.1. Convolutional Neural Network 

In the recent years, deep learning has thrived due to its ability to learn patterns within data and perform thus pave 
the way for intelligent decision making, superior in some cases to human possibilities. 1-3 At the heart of many 
emerging machine learning applications, such as image and video recognition, image classification, natural 
language processing, are deep Convolutional Neural Networks (CNNs), which are inspired by the visual neural 
structures of animals; the small regions of cells are sensitive to specific visual features (i.e. foveated). In other 
words, the type of sensitivities can extract the features from images in order to allow an accurate pattern 
recognition. In a CNN, convolutional layers are responsible for the feature extraction function, and thus, can 
perform accurately classification. Since convolutional processes are computationally overhead hungry (i.e.  power, 
latency), specialized hardware such as Graphic Process Units (GPUs) and Tensor Process Units (TPUs) are used 
for CNNs providing compute acceleration with parallelization paradigms. However, GPUs and TPUs are rather 
power-hungry and require longer computation time (>10’s of ms). Moreover, smaller matrix multiplication for less 
complex inference tasks (e.g. MNIST4) are still challenged by a non-negligible latency, predominantly due to the 
access overhead of the various memory hierarchies and the latency in executing each instruction in the GPU5. 
These shortcomings motivate our work of seeking compute-alternatives for CNNs. 

1.2. 4F system 

Processing convolutions scales with O(n2k2), where n and k are the matrix side-lengths of a squared data input 
matrix and the kernel, respectively, and is hence overhead heavy requiring many MAC operations (multiplications 
accumulate) in the spatial domain, and are therefore often conducted as point-wise dot-product multiplication in the 
Frequency domain instead. However, this requires Fourier-
domain transformations (FT) which is costly in electronics, 
however is passively performed in optics (by a lens).  Such 
Fourier Neural Networks (FNNs) can map onto a CNNs 
using. Here two convex lenses perform the FT and inverse 
FT domain crossings forming a 4f system. This design 
paradigm allows for massive papalism using digital display 
technology, while being power efficiency. 6 

 
Figure 1 (A) Experimental setup of massively parallel Fourier-
optic CNN: a first DMD loads the  inputs from MNIST or CIFAR-
10 onto an coherent optical beam. A second DMD loads the 
trained frequency mask (kernel) with an update rate of 9.5kHz and 
filters the image. A high-speed camera completes one 
convolutional filter layer. (B) CNN Training Process: the entire 
optical system is modeled and used to optimized the systems-loss 
function on MNIST and CIFAR-10 data sets. The trained kernels 
are loaded into the optical system, processes and read. Completing 
one CNN layer, polling and a fully-connected layers are 
performed electronically, past the camera. 
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1.3. DMD based 4f system 

Typical 4f systems are based on the Spatial Light Modulator (SLM) or passive masks to control both amplitude and 
phase. Such approaches can be relatively energy efficiency compared to serial electronics, due to the 106 channel 
optical parallelism. However the liquid crystal technology of SLMs are modulation-speed limited  to <100Hz. 

In contrast, the 4f CNN processor system introduced here is realized with Digital Micromirror Device (DMD, 
DLP6500, Taxes Instruments) offering rapid ~10kHz operation frequency. Other parts are: a sufficiently-long 
coherence laser (He-Ne 633nm), a 2-lens  beam expander, 2 Fourier-lenses and a high-speed camera (IDT Y-7) (Fig. 
1A). The processed images are sent to pooling and fully connected layer to complete classification performed 
electrically. Instead of using interferometric schemes or super-pixel approaches for considering also the phase, the 
DMD act as light valve performing amplitude-only convolutions. 

2. Result 

Our FNN has 3 layers, optical Fourier layer, electrical pooling layer and fully connected layer. We train our network 
in 2 steps. At first, we train in the computer by simulating the physical model. And then, we load the trained filters 
in the 2nd DMD, read out the filtered images from camera and calibrate the fully connected layer to compensate the 
experimental errors such as misalignment, optical distortion and DMD angle distortion. (Fig. 1B). 

 

 

 

 

 

       
   

Table I. Inference accuracies for a 1xlayer  
CNN: our simulated model, experimental 
realization without and with calibration, and  
SLM-based system. 

By examining the processing speed, we found the amplitude-only 4f system enabling an about 10x speed 
improvement to process convolutions compared with a state-of-the-art GPU, when performing large matrix 
convolutions. The maximum resolution is 2K for DLP 6500 DMD, which is shown as vertical line in Figure 2. 
Despite the of the amplitude-only modulation system we find competitive inference accuracies compared to phase-
based systems 6 (Table I). 

3. Conclusion 
Here we introduced an optical accelerator processing convolutions optically as dot-product multiplications in the 
Fourier domain. Using amplitude-only high-speed digital mirror displays we harness the best from massively 
parallel optics (million parallel channels), while offering an rapid ~10kHz kernel update rates, an speed-up of over 
100x compared to SLM-based systems. Using this optical-electrical hybrid 1-layer CNN performing inference task 
on trained datasets (MNIST and CIFAR-10), we find a comparable accuracy performance to phase-based 
alternatives. Note, our actual accuracities testing was cut short due to COVID-related lab closures, and we expect 
this system to show higher performance using more data for system calibration, thus improving the physical model.  
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 Model MNIST CIFAR 
Space-domain 
convolution 

(full precision CNN) 

98% 63% 

Simulation model 
(Fourier convolution) 

98% 62% 

Hardware model 
(without calibration) 

92% 25% 

Hardware model  
(with calibration) 

98% 40% 

Spatial Light Modulator 
model6 

NA 44% 

Figure 2 Shows the operation time of our amplitude-only version, Nvidia 
P100 GPU and SLM 4F system. The vertical line is the maximum 
resolution for DLP6500 DMD. The DMD-based approach allows for an 
~10x convolution processing speed up over the GPU.  


